Главная - Процедуры для красоты
Что такое истинная и средняя теплоемкость. Теплоёмкость газов. Зависимость теплоёмкости от температуры и процесса. Истинная и средняя теплоёмкость. Что можно сказать о вычислении теплоемкости

Цель работы

Экспериментально определить значения средней теплоемкости воздуха в диапазоне изменения температур от t 1 до t 2 , установить зависимость теплоемкости воздуха от температуры.

1. Определить мощность, затрачиваемую на нагрев газа от t 1

до t 2 .

2. Зафиксировать значения расхода воздуха в заданном интервале времени.

Указания по подготовке к лабораторной работе

1. Проработать раздел курса “Теплоемкость” по рекомендуемой литературе.

2. Ознакомиться с настоящим методическим пособием.

3. Подготовить протоколы лабораторной работы, включив необходимый теоретический материал, относящийся к данной работе (расчетные формулы, схемы, графики).

Теоретическое введение

Теплоемкость - важнейшая теплофизическая величина, которая прямо или косвенно входит во все теплотехнические расчеты.

Теплоемкость характеризует теплофизические свойства вещества и зависит от молекулярной массы газа μ , температуры t , давления р , числа степеней свободы молекулы i , от процесса, в котором подводится или отводится теплота р = сопst , v = сопst . Наиболее существенно теплоемкость зависит от молекулярной массы газа μ . Так, например, теплоемкость для некоторых газов и твердых веществ составляет



Таким образом, чем меньше μ , тем меньше вещества содержится в одном киломоле и тем больше нужно подвести теплоты, чтобы изменить температуру газа на 1 К. Вот почему водород является более эффективным охладителем, чем, например, воздух.

Численно теплоемкость определяется как количество теплоты, которое необходимо подвести к 1 кг (или 1 м 3), вещества чтобы изменить его температуру на 1 К.

Так как количество подведенной теплоты dq зависит от характера процесса, то и теплоемкость так же зависит от характера процесса. Одна и та же система в разных термодинамических процессах обладает различными теплоемкостями - c p , c v , c n . Наибольшее практическое значение имеют c p и c v .

По молекулярно-кинематической теории газов (МКТ) для заданного процесса теплоемкость зависит только от молекулярной массы. Например, теплоемкость c p и c v можно определить как

Для воздуха (k = 1,4; R = 0,287 кДж /(кг · К))

кДж/кг

Для заданного идеального газа теплоемкость зависит только от температуры, т.е.

Теплоемкостью тела в данном процессе называется отношение теплоты dq , полученного телом при бесконечно малом изменении его состояния к изменению температуры тела на dt

Истинная и средняя теплоемкости

Под истинной теплоемкостью рабочего тела понимают:

Истинная теплоемкость выражает значение теплоемкости рабочего тела в точке при данных параметрах.

Количество передаваемой теплоты. выраженную через истинную теплоемкость, можно рассчитать по уравнению

Различают:

Линейную зависимость теплоемкости от температуры

где а - теплоемкость при t = 0 °С;

b = tg α - угловой коэффициент.

Нелинейную зависимость теплоемкости от температуры.

Например, для кислорода уравнение представляется как

кДж/(кг·К)

Под средней теплоемкостью с т понимают отношение количества теплоты в процессе 1-2 к соответствующему изменению температуры

кДж/(кг·К)

Средняя теплоемкость рассчитывается как:

Где t = t 1 + t 2 .

Расчет теплоты по уравнению

затруднителен, так как в таблицах дается значение теплоемкости . Поэтому теплоемкость в интервале от t 1 до t 2 необходимо определять по формуле

.

Если температура t 1 и t 2 определяется экспериментально, то для m кг газа количество передаваемой теплоты следует рассчитывать по уравнению

Средняя с т и с истинная теплоемкости связаны уравнением:

Для большинства газов чем больше температура t , тем выше теплоемкость с v , с р . Физически это означает, что чем больше нагрет газ, тем труднее нагревать его дальше.

– это количество теплоты, подведенное к 1 кг вещества при изменении его температуры от Т 1 до Т 2 .

1.5.2. Теплоемкость газов

Теплоемкость газов зависит от:

    типа термодинамического процесса (изохорный, изобарный, изотермический и др.);

    рода газа, т.е. от числа атомов в молекуле;

    параметров состояния газа (давления, температуры и др.).

А) Влияние типа термодинамического процесса на теплоемкость газа

Количество теплоты, необходимое для нагревания одного и того же количества газа в одном и том же диапазоне температур, зависит от типа термодинамического процесса, совершаемого газом.

В изохорном процессе (υ = const) теплота тратится лишь на нагрев газа на величину. Газ не расширяется в замкнутом сосуде (рис. 1.2а ), поэтому и не совершает работу. Теплоемкость газа в изохорном процессе обозначается символом с υ .

В изобарном процессе (р = const) теплота тратится не только на нагрев газа на ту же величину, что и в изохорном процессе, но и на совершение им работыпри поднятии поршня с площадьюна величину(рис. 1.2б ). Теплоемкость газа в изобарном процессе обозначается символом с р .

Так как по условию в обоих процессах величина одинакова, то в изобарном процессе за счет совершения газом работывеличина. Поэтому в изобарном процессе теплоемкостьс р с υ .

В соответствии с формулой Майера для идеального газа

или . (1.6)

Б) Влияние рода газа на его теплоемкость Из молекулярно-кинетической теории идеального газа известно, что

где – число поступательных и вращательных степеней свободы движения молекул данного газа. Тогда

, а . (1.7)

Одноатомный газ имеет три поступательных степени свободы движения молекулы (рис.1.3а ), т.е. .

Двухатомный газ имеет три поступательных степени свободы движения и две степени свободы вращательного движения молекулы (рис. 1.3б ), т.е. . Аналогично можно показать, что для трехатомного газа.

Таким образом, мольная теплоемкость газов зависит от числа степеней свободы движения молекул, т.е. от числа атомов в молекуле , а удельная теплоемкость зависит также от молекулярной массы, т.к. от неё зависит значение газовой постоянной, которая различна для разных газов.

В) Влияние параметров состояния газа на его теплоемкость

Теплоемкость идеального газа зависит только от температуры и увеличивается при увеличении Т .

Одноатомные газы представляют исключение, т.к. их теплоемкость практически не зависит от температуры.

Классическая молекулярно-кинетическая теория газов позволяет довольно точно определить теплоемкости одноатомных идеальных газов в широком диапазоне температур и теплоемкости многих двухатомных (и даже трехатомных) газов при невысоких температурах.

Но при температурах, существенно отличных от 0 о С, экспериментальные значения теплоемкости двух- и многоатомных газов оказываются значительно отличающимися от предсказанных молекулярно-кинетической теорией.

На рис. 1.4 приведена зависимость молярных теплоемкостей водорода и гелия при постоянном объеме с v  от абсолютной температуры Т в широком диапазоне её изменения. Как видно, значения теплоемкости для двухатомного газа (и многоатомных газов) могут существенно зависеть от температуры. Это объясняется тем, что при низких температурах вращательные степени свободы не возбуждаются, и поэтому молярная теплоемкость двухатомного (и многоатомного) газа оказывается такой же, как и у одноатомного (у водорода такой же, как у гелия). При высоких же температурах у двух- и многоатомных газов возбуждаются еще и степени свободы, связанные с колебаниями атомов в молекулах, что ведет к дополнительному увеличению их теплоемкости.

В теплотехнических расчетах обычно пользуются опытными значениями теплоемкости газов, представленными в виде таблиц. При этом теплоемкость, определенная в опыте (при данной температуре), называется истинной теплоемкостью. А если в опыте измерялось количество теплоты q , которое было затрачено на существенное повышение температуры 1 кг газа от некоторой температуры T 0 до температуры T , т.е. на Т = Т T 0 , то отношение

называется средней теплоемкостью газа в данном интервале температур.

Обычно в справочных таблицах значения средней теплоемкости даются при значении T 0 , соответствующем нулю градусов Цельсия.

Теплоемкость реального газа зависит, кроме температуры, также и от давления из-за влияния сил межмолекулярного взаимодействия.

Это количество теплоты, которое необходимо сообщить системе для увеличения ее температуры на 1 (К ) при отсутствии полезной работы и постоянстве соответствующих параметров.

Если в качестве системы мы берем индивидуальное вещество, то общая теплоемкость системы равняется теплоемкости 1 моль вещества () умноженное на число моль ().

Теплоемкость может быть удельная и молярная.

Удельная теплоемкость - это количество теплоты, необходимое для нагревания единицы массы вещества на 1 град (интенсивная величина).

Молярная теплоемкость - это количество теплоты, необходимое для нагревания одного моль вещества на 1 град .

Различают истинную и среднюю теплоемкость.

В технике обычно используют понятие средней теплоемкости.

Средняя - это теплоемкость для определенного интервала температур.

Если системе, содержащей количество вещества или массой , сообщили количество теплоты , а температура системы повысилась от до , то можно рассчитать среднюю удельную или молярную теплоемкость:

Истинная молярная теплоемкость - это отношение бесконечно малого количества теплоты, сообщенной 1 моль вещества при определенной температуре, к приращению температуры, которое при этом наблюдается.

Согласно уравнению (19), теплоемкость, как и теплота, не является функцией состояния. При постоянном давлении или объеме, согласно уравнениям (11) и (12), теплота, а, следовательно, и теплоемкость приобретают свойства функции состояния, то есть становятся характеристическими функциями системы. Таким образом, получаем изохорную и изобарную теплоемкости.

Изохорная теплоемкость - количество теплоты, которое необходимо сообщить системе, чтобы повысить температуру на 1 , если процесс происходит при .

Изобарная теплоемкость - количество теплоты, которое необходимо сообщить системе, чтобы повысить температуру на 1 при .

Теплоемкость зависит не только от температуры, но и от объема системы, поскольку между частицами существуют силы взаимодействия, которые изменяются при изменении расстояния между ними, поэтому в уравнениях (20) и (21) используют частные производные.

Энтальпия идеального газа, как и его внутренняя энергия, является функцией только температуры:

а в соответствии с уравнением Менделеева-Клапейрона , тогда

Поэтому для идеального газа в уравнениях (20), (21) частные производные можно заменить на полные дифференциалы:

Из совместного решения уравнений (23) и (24) с учетом (22), получим уравнение взаимосвязи между и для идеального газа.

Разделив переменные в уравнениях (23) и (24), можно рассчитать изменение внутренней энергии и энтальпии при нагревании 1 моль идеального газа от температуры до


Если в указанном интервале температур теплоемкость можно считать постоянной, то в результате интегрирования получаем:

Установим взаимосвязь между средней и истинной теплоемкостью. Изменение энтропии с одной стороны выражается уравнением (27), с другой -

Приравняв правые части уравнений и выразив среднюю теплоемкость, имеем:

Аналогичное выражение можно получить для средней изохорной теплоемкости.

Теплоемкость большинства твердых, жидких и газообразных веществ повышается с ростом температуры. Зависимость теплоемкости твердых, жидких и газообразных веществ от температуры выражается эмпирическим уравнением вида:

где а , b , c и - эмпирические коэффициенты, вычисленные на основе экспериментальных данных о , причем коэффициент относится к органическим веществам, а - к неорганическим. Значения коэффициентов для различных веществ приведены в справочнике и применимы только для указанного интервала температур.

Теплоемкость идеального газа не зависит от температуры. Согласно молекулярно-кинетической теории теплоемкость, приходящаяся на одну степень свободы, равна (степень свободы - число независимых видов движения на которые можно разложить сложное движение молекулы). Для одноатомной молекулы характерно поступательное движение, которое можно разложить на три составляющие в соответствии с тремя взаимно перпендикулярными направлениями по трем осям. Поэтому изохорная теплоемкость одноатомного идеального газа равна

Тогда изобарная теплоемкость одноатомного идеального газа согласно (25) определится по уравнению

Двухатомные молекулы идеального газа помимо трех степеней свободы поступательного движения имеют и 2 степени свободы вращательного движения. Следовательно .

Теплоемкость – теплофизическая характеристика, которая определяет способность тел отдавать или воспринимать теплоту, чтобы изменять температуру тела. Отношение количества теплоты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):C=dQ/dT, где - элементарное количество теплоты; - элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Единицей теплоемкости будет Дж/К.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость - это теплоемкость, отнесенная к единице массы рабочего тела,c=C/m

Единицей измерения массовой теплоемкости является Дж/(кг×К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость - теплоемкость, отнесенная к единице объема рабочего тела, где и - объем и плотность тела при нормальных физических условиях. C’=c/V=c p . Объемная теплоемкость измеряется в Дж/(м 3 ×К).

Мольная теплоемкость - теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,C m =C/n, где n - количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль×К).

Массовая и мольная теплоемкости связаны следующим соотношением:

Объемная теплоемкость газов выражается через мольную как

Где м 3 /моль - мольный объем газа при нормальных условиях.

Уравнение Майера: С р – С v = R.

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как C(t), а удельную – как c(t). Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать C(t) истинной теплоёмкостью термодинамической системы при температуре системы равной t 1 , а c(t) - истинной удельной теплоёмкостью рабочего тела при его температуре равной t 2 . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от t 1 до t 2 можно определить как



Обычно в таблицах приводятся средние значения теплоемкости c ср для различных интервалов температур, начинающихся с t 1 =0 0 C. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от t 1 до t 2 , в котором t 1 ≠0, количество удельной теплоты q процесса определяется с использованием табличных значений средних теплоемкостей c ср следующим образом.



 


Читайте:



За ранее нужно приготовить некоторые предметы

За ранее нужно приготовить некоторые предметы

Как праздновать день рождения Мы с детства привыкли к тому, что это - один из двух самых ожидаемых и желанных праздников в году. Поздравления,...

Народные приметы на Рождество Христово: обряды, традиции и интересные факты

Народные приметы на Рождество Христово: обряды, традиции и интересные факты

Праздник Рождества Христова существует очень давно и были выработаны многочисленные приметы на Рождество:Приметы на Рождество В Рождествонельзя...

Как приготовить вареное сало рецепты

Как приготовить вареное сало рецепты

Сало является одним из основных продуктов славянского народа. Его часто используют для приготовлении различных блюд, добавляют в фарш, используют в...

Окрошка vs холодные супы других народов

Окрошка vs холодные супы других народов

Квас для окрошки Для окрошки лучше всего подойдёт свежий квас или квас, приготовленный в домашних условиях. Квас перемешать с продуктами для...

feed-image RSS