Реклама

Главная - Ресницы и брови
Оксид хрома: формула, характеристика и химические свойства. Хром и его соединения Оксид и гидроксид хрома 2 получение

] молекуле CrO приписаны многочисленные R-оттененные полосы, наблюдавшиеся в диапазоне 4800 – 7100Å в спектре испускания электрической дуги на воздухе при помещении в нее металлического хрома или соли Cr 2 Cl 6 . Колебательный анализ показал, что полосы принадлежат одной системе (электронному переходу) с 0-0 полосой около 6000Å, определены колебательные константы верхнего и нижнего электронных состояний. К «оранжевой» системе отнесены также полосы в интервале 7100 – 8400Å, измеренные в [ 32FER ]. В работе [ 55NIN ] проведен частичный анализ вращательной структуры полос, на основании которого установлен тип электронного перехода 5 Π - 5 Π. В справочнике [ 84ХЬЮ/ГЕР ] нижнее состояние системы обозначено как основное состояние молекулы X 5 Π.

Полный вращательный анализ пяти полос системы (2-0, 1-0, 0-0, 0-1 и 0-2) выполнен в работе [ 80HOC/MER ]. Полосы зарегистрированы с высоким разрешением в спектре испускания разряда и в спектре лазерного возбуждения молекул CrO в потоке инертного газа-носителя. Нижнее состояние системы подтверждено как основное состояние молекулы (спектр лазерного возбуждения получен при температуре газа-носителя чуть ниже комнатной).

Еще одна более слабая система полос CrO обнаружена в спектре испускания разряда в ближней инфракрасной области [ 84CHE/ZYR ]. Спектр получен с помощью Фурье-спектрометра. Вращательный анализ 0-0 полосы, расположенной около 8000 см ‑1 , показал, что система принадлежит переходу 5 Σ - X 5 Π.

Третья система полос CrO, с центром около 11800 см ‑1 , обнаружена в спектре хемилюминесценции при реакции атомов хрома с озоном [ 89DEV/GOL ]. Полосы этой системы отмечены также в атласе [ 57GAT/JUN ]. В [ 93BAR/HAJ ] полосы 0-0 и 1-1 получены с высоким разрешением в спектре лазерного возбуждения. Проведен вращательный анализ, который показал, что система образована переходом 5 Δ - X 5 Π.

В спектре хемилюминесценции [ 89DEV/GOL ] обнаружена система полос в районе 4510Å (ν 00 = 22163 см ‑1), проведен колебательный анализ. Система принадлежит, вероятно, электронному переходу с переносом заряда, т.к. колебательный интервал в верхнем состоянии намного меньше колебательных интервалов в других состояниях CrO. Предварительно электронный переход обозначен как C 5 Π - X 5 Π.

Фотоэлектронные спектры аниона CrO - получены в работах [ 96WEN/GUN ] и [ 2001GUT/JEN ]. Наиболее полная и надежная интерпретация спектров, основанная на MRCI расчете аниона и молекулы, представлена в работе [ 2002BAU/GUT ]. Согласно расчету анион имеет основное состояние X 4 Π и первое возбужденное состояние 6 Σ + . В спектрах наблюдаются одноэлектронные переходы из этих состояний в основное и 5 возбужденных состояний нейтральной молекулы: X 5 Π ← 6 Σ + (1.12 эВ), X 5 Π ← X 4 Π (1.22 эВ), 3 Σ – ← X 4 Π (1.82 эВ), 5 Σ + ← 6 Σ + (2.13 эВ), 3 Π ← X 4 Π (2.28 эВ), 5 Δ ← 6 Σ + (2.64 эВ), 3 Φ ← X 4 Π (3.03 эВ). Энергии квинтетных состояний CrO согласуются с данными оптических спектров. Триплетные состояния 3 Σ – (0.6 эВ), 3 Π (1.06 эВ) и 3 Φ (1.81 эВ) в оптических спектрах не наблюдались.

Квантово-механические расчеты CrO выполнены в работах [ 82GRO/WAH, 84HUZ/KLO, 85BAU/NEL, 85NEL/BAU, 87AND/GRI, 87DOL/WED, 88JAS/STE, 89STE/NAC, 95BAU/MAI, 96BAK/STI, 2000BRI/ROT, 2000GUT/RAO, 2001GUT/JEN, 2002BAU/GUT, 2003GUT/AND, 2003DAI/DEN, 2006FUR/PER, 2007JEN/ROO, 2007WAG/MIT ]. В расчете [ 85BAU/NEL ] показано и подтверждено в последующих расчетах, что основным состоянием молекулы является 5 Π. Энергии возбужденных состояний приведены прямо или косвенно (в виде энергии диссоциации или сродства к электрону) в работах [ 85BAU/NEL, 85NEL/BAU, 96BAK/STI, 2000BRI/ROT, 2001GUT/JEN, 2002BAU/GUT, 2003DAI/DEN ].

В расчет термодинамических функций были включены: а) нижняя компонента Ω = -1 состояния X 5 Π, как основное состояние; б) остальные Ω-компоненты X 5 Π, как отдельные возбужденные состояния; в) возбужденные состояния, энергии которых определены экспериментально или рассчитаны; г) синтетические состояния, которые учитывают все прочие состояния молекулы с оцененной энергией до 40000 см -1 .

Равновесные константы для состояния X 5 Π CrO получены в [ 80HOC/MER ]. Они приведены в таблице Cr.Д1 , как константы для нижней компоненты X 5 Π –1 , хотя относятся ко всему состоянию в целом. Различия в значениях ω e для компонент состояния X 5 Π незначительны и учтены в погрешности ± 1 см -1 .

Энергии возбужденных состояний приведены согласно спектроскопическим данным [ 84CHE/ZYR ] (5 Π 0 , 5 Π 1 , 5 Π 2 , 5 Π 3 , A 5 Σ +), [ 93BAR/HAJ ] ( 5 Δ), [ 80HOC/MER ] (B 5 Π), [ 89DEV/GOL ] (C 5 Π); интерпретации фотоэлектронных спектров [ 2002BAU/GUT ] (3 Σ - , 3 Π, 3 Φ); согласно расчетам [ 2002BAU/GUT ] (5 Σ – , 3 Δ) и [ 2003DAI/DEN ] (3 Σ).

Колебательные и вращательные константы возбужденных состояний CrO в расчетах термодинамических функций не использовались и приведены в таблице Cr.Д1 для справки. Для состояний A 6 Σ + , 5 Δ, B 5 Π, C (5 Π) приведены спектроскопические константы по данным работ [ 84CHE/ZYR, 93BAR/HAJ, 80HOC/MER, 89DEV/GOL ], соответственно. Для состояний 3 Σ - , 3 Π, 3 Φ приведены значения ω e , полученные из фотоэлектронного спектра аниона в работе [ 96WEN/GUN ]. Значения ω e для состояний 5 Σ - , 3 Δ и r e для 3 Σ - , 3 Π, 3 Φ, 5 Σ - , 3 Δ приведены согласно результатам MRCI расчета [ 2002BAU/GUT ].

Статистические веса синтетических состояний оценены с использованием ионной модели. Наблюдавшиеся и рассчитанные состояния CrO отнесены к трем ионным конфигурациям: Cr 2+ (3d 4)O 2- , Cr 2+ (3d 3 4s)O 2- и Cr + (3d 5)O - . Энергии других состояний этих конфигураций оценены с использованием данных [ 71MOO ] о положении термов однозарядного и двухзарядного ионов хрома. Использованы также оценки [ 2001GUT/JEN ] для энергий состояний 7 Π, 7 Σ + конфигурации Cr + (3d 5)O - .

Термодинамические функции CrO(г) были вычислены по уравнениям (1.3) - (1.6) , (1.9) , (1.10) , (1.93) - (1.95) . Значения Q вн и ее производных рассчитывались по уравнениям (1.90) - (1.92) с учетом девятнадцати возбужденных состояний в предположении, что Q кол.вр (i ) = (p i /p X)Q кол.вр (X ) . Колебательно-вращательная статистическая сумма состояния X 5 Π -1 и ее производные вычислялись по уравнениям (1.70) - (1.75) непосредственным суммированием по колебательным уровням и интегрированием по вращательным уровням энергии с помощью уравнения типа (1.82) . В расчетах учитывались все уровни энергии со значениями J < J max,v , где J max,v находилось из условий (1.81) . Колебательно-вращательные уровни состояния X 5 Π -1 вычислялись по уравнениям (1.65) , значения коэффициентов Y kl в этих уравнениях были рассчитаны по соотношениям (1.66) для изотопической модификации, соответствующей естественной смеси изотопов хрома и кислорода из молекулярных постоянных 52 Cr 16 O, приведенных в таблице Cr.Д1 . Значения коэффициентов Y kl , а также величины v max и J lim приведены в табл.Cr.Д2 .

При комнатной температуре получены следующие значения:

C p o (298.15 К) = 32.645 ± 0.26 Дж× К ‑1 × моль ‑1

S o (298.15 К) = 238.481 ± 0.023 Дж× К ‑1 × моль ‑1

H o (298.15 К)-H o (0) = 9.850 ± 0.004 кДж× моль ‑1

Основной вклад в погрешность рассчитанных термодинамических функций CrO(г) при температурах 298.15 и 1000 K дает метод расчета. При 3000 и 6000 K погрешность обусловлена главным образом неопределенностью энергий возбужденных электронных состояний. Погрешности в значениях Φº(T ) при T = 298.15, 1000, 3000 и 6000 K оцениваются в 0.02, 0.04, 0.2 и 0.4 Дж× K ‑1 × моль ‑1 , соответственно.

Ранее термодинамические функции CrO(г) вычислялись для таблиц JANAF [ 85CHA/DAV ], Шнейдером [ 74SCH ] (T = 1000 – 9000 K), Брюэром и Розенблатом [ 69BRE/ROS ] (значения Φº(T ) для T ≤ 3000 K). Расхождения таблиц JANAF и табл. CrO при низких температурах обусловлены тем, что авторы [ 85CHA/DAV ] не могли учесть мультиплетное расщепление состояния X 5 Π; расхождение в значениях Φº(298.15) составляет 4.2 Дж× K ‑1 × моль ‑1 . В области 1000 – 3000 K расхождения в значениях Φº(T ) не превышают 1.5 Дж× K ‑1 × моль ‑1 , но к 6000 K достигают 3.1 Дж× K ‑1 × моль ‑1 из-за того, что в [

Несколько химических соединений, состоящих из двух простых элементов — Cr и O, — относятся к классу неорганических соединений — оксидов. Их общее название — оксид хрома, далее в скобках принято римскими цифрами указывать валентность металла. Другие их названия и химические формулы:

  • хром (II) оксид — закись хрома, CrO;
  • хром (III) оксид — хромовая зелень, сесквиоксид хрома, Cr2O3;
  • хром (IV) оксид — окись хрома, CrO2;
  • хром (VI) оксид — хромовый ангидрид, трехокись хрома, CrO3.

Соединение, в котором металл шестивалентен, и есть высший оксид хрома. Это твердое вещество без запаха, по внешнему виду представляющее собой (на воздухе они расплываются из-за сильной гигроскопичности). Молярная масса — 99,99 г/моль. Плотность при 20 °С равняется 2,70 г/см³. Температура плавления — 197 °С, кипения — 251 °С. При 0 °С в воде растворяется 61,7 г/100, при 25 °С — 63 г/100 мл, при 100 °С — 67,45 г/100 мл. Окисел также растворяется в серной кислоте (это хромовая смесь, которую используют в лабораторной практике для мытья химической посуды) и этиловом спирте, этиловом эфире, уксусной кислоте, ацетоне. При 450 °С разлагается до Cr2O3.

Хром (VI) оксид применяется в процессе электролиза (для получения чистого хрома), для хроматирования оцинкованных изделий, в электролитическом хромировании, как сильный окислитель (для производства индиго и изатина). хрома используется для обнаружения алкоголя в выдыхаемом воздухе. Взаимодействие протекает по схеме: 4CrO3 + 6H2SO4 + 3C2H5OH → 2Cr2(SO4)3 + 3CH3COOH +9H2O. На наличие алкоголя указывает изменение окраски раствора (приобретает зеленый цвет).

Хром (VI) оксид, как и все соединения шестивалентного Cr, является сильным ядом (летальная доза — 0,1 г). Из-за своей высокой активности CrO3 вызывает возгорание (со взрывами) при соприкосновении с ними. Несмотря на малую летучесть, высший оксид хрома опасен при вдыхании, так как вызывает рак легких. При контакте с кожей (даже при скором его удалении) вызывает раздражения, дерматиты, экземы, провоцирует развитие рака.

Окисел с четырехвалентным хромом CrO2 по внешнему виду представляет собой твердое вещество в виде черных тетраэдрических ферромагнитных кристаллов. Оксид хрома 4 имеет молярную массу 83,9949 г/моль, плотность 4,89 г/см³. Вещество плавится, одновременно разлагаясь, при температуре 375 °С. В воде не растворяется. Используется в носителях магнитной записи в качестве рабочего вещества. С ростом популярности компакт-дисков и DVD-дисков использование хрома (IV) оксида снизилось. Был впервые синтезирован в 1956 году химиком из компании EI DuPont Норман Л. Коксом путем разложения триоксида хрома в присутствии воды при температуре 640 °С и давлении 200 МПа. По лицензии DuPont выпускается компаниями Sony в Японии и BASF в Германии.

Оксид хрома 3 Cr2O3 представляет собой твердое мелкокристаллическое вещество от светло- до темно-зеленого цвета. Молярная масса равняется 151,99 г/моль. Плотность — 5,22 г/см³. Температура плавления — 2435 °С, кипения — 4000 °С. Показатель преломления чистого вещества — 2,551. Этот окисел не растворяется в воде, в спирте, ацетоне, кислоте. Поскольку его плотность приближается к плотности корунда, его вводят в составы полирующих средств (например, пасты ГОИ). Это один из хрома, который используется в качестве пигмента. Впервые по секретной технологии он был получен в 1838 году в виде прозрачной гидратированной формы. В природе встречается в виде хромистого железняка FeO.Cr2O3.

Окисел двухвалентного хрома — твердое вещество черного или красного цвета с температурой плавления 1550 °С. Плавится с разложением. Молярная масса — 67,996 г/моль. Оксид хрома (II) красного цвета не пирофорен, а это же вещество черного цвета является пирофорным. Порошок самовоспламеняется на воздухе, поэтому его можно хранить только под слоем в воды, так как с ней он не взаимодействует. Черную закись хрома получить в чистом виде очень сложно.

Для оксидов хрома с низшей валентностью характерны основные свойства, а для окисла с высшей валентностью — кислотные.

Хром образует три оксида: CrO, Cr 2 O 3 , CrO 3 .

Оксид хрома (II) CrO - пирофорный черный порошок. Обла­дает основными свойствами.

В окислительно-восстановительных реакциях ведет себя как восстановитель:

CrO получают разложением в вакууме карбонила хрома Cr(СО) 6 при 300°С.

Оксид хрома (III) Cr 2 O 3 - тугоплавкий порошок зеленого цвета. По твердости близок к корунду, поэтому его вводят в состав полирующих средств. Образуется при взаимодействии Cr и O 2 при высокой температуре. В лаборатории оксид хрома (III) можно получить нагреванием дихромата аммония:

(N -3 H 4) 2 Cr +6 2 O 7 =Cr +3 2 O 3 +N 0 2 ­+4Н 2 О

Оксид хрома (III) обладает амфотерными свойствами. При взаимодействии с кислотами образуются соли хрома (III): Cr 2 O 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +3Н 2 О

При взаимодействии с щелочами в расплаве образуются со­единения хрома (III) - хромиты (в отсутствие кислорода): Cr 2 O 3 +2NaOH=2NaCrO 2 +Н 2 О

В воде оксид хрома (III) нерастворим.

В окислительно-восстановительных реакциях оксид хрома (III) ведет себя как восстановитель:

Оксид хрома (VI) CrO 3 - хромовый ангидрид, представляет собой темно-красные игольчатые кристаллы. При нагревании около 200°С разлагается:

4CrO 3 =2Cr 2 O 3 +3O 2 ­

Легко растворяется в воде, имея кислотный характер, образу­ет хромовые кислоты. С избытком воды образуется хромовая кис­лота H 2 CrO 4:

CrO 3 +Н 2 O=Н 2 CrO 4

При большой концентрации CrO 3 образуется дихромовая кис­лота Н 2 Cr 2 О 7:

2CrO 3 +Н 2 О=Н 2 Cr 2 О 7

которая при разбавлении переходит в хромовую кислоту:

Н 2 Cr 2 О 7 +Н 2 О=2Н 2 CrO 4

Хромовые кислоты существуют только в водном растворе, ни одна из этих кислот в свободном состоянии не выделена. Однако соли их весьма устойчивы.

Оксид хрома (VI) является сильным окислителем:

3S+4CrO 3 =3SO 2 ­+2Cr 2 O 3

Окисляет иод, серу, фосфор, уголь, превращаясь в Cr 2 O 3 . Получают CrO 3 действием избытка концентрированной сер­ной кислоты на насыщенный водный раствор дихромата натрия: Na 2 Cr 2 O 7 +2H 2 SO 4 =2CrO 3 +2NaHSO 4 +H 2 O Следует отметить сильную токсичность оксида хрома (VI).

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром- твёрдый металл голубовато-белого цвета.

Химические свойства хрома

При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O 2 – t° →2Cr 2 O 3

2Cr + 3Cl 2 – t° → 2CrCl 3

2Cr + N 2 – t° → 2CrN

2Cr + 3S – t° → Cr 2 S 3

В раскалённом состоянии реагирует с парами воды:

2Cr + 3H 2 O → Cr 2 O 3 + 3H 2

Хром растворяется в разбавленных сильных кислотах (HCl, H 2 SO 4)

В отсутствии воздуха образуются соли Cr 2+ , а на воздухе – соли Cr 3+ .

Cr + 2HCl → CrCl 2 + H 2 ­

2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 ­

Наличие защитной окисной плёнки на поверхности металла объясняет его пассив-ность по отношению к концентрированным растворам кислот – окислителей.

Соединения хрома

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH) 2 + 2HCl → CrCl 2 + 2H 2 O

Соединения хрома (II) — сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl 2 + 2HCl → 2CrCl 3 + H 2 ­

4Cr(OH) 2 + O 2 + 2H 2 O → 4Cr(OH) 3

Оксид хрома (III) Cr 2 O 3 – зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

2Cr(OH) 3 – t° → Cr 2 O 3 + 3H 2 O

4K 2 Cr 2 O 7 – t° → 2Cr 2 O 3 + 4K 2 CrO 4 + 3O 2 ­

(NH 4) 2 Cr 2 O 7 – t° → Cr 2 O 3 + N 2 ­+ 4H 2 O­ (реакция «вулканчик»)

Амфотерный оксид. При сплавлении Cr 2 O 3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

Cr 2 O 3 + 2NaOH → 2NaCrO 2 + H 2 O

Cr 2 O 3 + Na 2 CO 3 → 2NaCrO 2 + CO 2 ­

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

Cr 2 O 3 + 4KOH + KClO 3 → 2K 2 CrO 4 + KCl + 2H 2 O

Гидроксид хрома (III) С r (ОН) 3 . Амфотерный гидроксид. Серо-зеленый, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид СrО(ОН). Не растворяется в воде. Из раствора осаждается в виде серо-голубого и голубовато-зеленого гидрата. Реагирует с кислотами и щелочами, не взаимодействует с гидратом аммиака.

Обладает амфотерными свойствами — растворяется как в кислотах, так и в щелочах:

2Cr(OH) 3 + 3H 2 SO 4 → Cr 2 (SO 4) 3 + 6H 2 O Сr(ОН) 3 + ЗН + = Сr 3+ + 3H 2 O

Cr(OH) 3 + KOH → K , Сr(ОН) 3 + ЗОН — (конц.) = [Сr(ОН) 6 ] 3-

Cr(OH) 3 + KOH → KCrO 2 +2H 2 O Сr(ОН) 3 + МОН = МСrO 2(зел.) + 2Н 2 O (300-400 °С, М = Li, Na)

Сr(ОН) 3 →(120 o C H 2 O ) СrO(ОН) →(430-1000 0 С – H 2 O ) Cr 2 O 3

2Сr(ОН) 3 + 4NаОН (конц.) + ЗН 2 O 2(конц.) =2Na 2 СrO 4 + 8Н 2 0

Получение : осаждение гидратом аммиака из раствора солей хрома(Ш):

Сr 3+ + 3(NH 3 Н 2 O) = С r (ОН) 3 ↓ + ЗNН 4+

Cr 2 (SO 4) 3 + 6NaOH → 2Cr(OH) 3 ↓+ 3Na 2 SO 4 (в избытке щелочи — осадок растворяется)

Соли хрома (III) имеют фиолетовую или тёмно-зелёную окраску. По химическим свойствам напоминают бесцветные соли алюминия.

Соединения Cr (III) могут проявлять и окислительные, и восстановительные свойства:

Zn + 2Cr +3 Cl 3 → 2Cr +2 Cl 2 + ZnCl 2

2Cr +3 Cl 3 + 16NaOH + 3Br 2 → 6NaBr + 6NaCl + 8H 2 O + 2Na 2 Cr +6 O 4

Соединения шестивалентного хрома

Оксид хрома (VI) CrO 3 — ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H 2 SO 4 (конц.).

K 2 CrO 4 + H 2 SO 4 → CrO 3 + K 2 SO 4 + H 2 O

K 2 Cr 2 O 7 + H 2 SO 4 → 2CrO 3 + K 2 SO 4 + H 2 O

CrO 3 — кислотный оксид, со щелочами образует жёлтые хроматы CrO 4 2- :

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr 2 O 7 2- :

2K 2 CrO 4 + H 2 SO 4 → K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

В щелочной среде эта реакция протекает в обратном направлении:

K 2 Cr 2 O 7 + 2KOH → 2K 2 CrO 4 + H 2 O

Дихромат калия – окислитель в кислой среде:

К 2 Сr 2 O 7 + 4H 2 SO 4 + 3Na 2 SO 3 = Cr 2 (SO 4) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3NaNO 2 = Cr 2 (SO 4) 3 + 3NaNO 3 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6KI = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6FeSO 4 = Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O

Хромат калия К 2 Cr О 4 . Оксосоль. Желтый, негигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде (желтая окраска раствора отвечает иону СrO 4 2-), незначительно гидролизуется по аниону. В кислотной среде переходит в К 2 Cr 2 O 7 . Окислитель (более слабый, чем К 2 Cr 2 O 7). Вступает в реакции ионного обмена.

Качественная реакция на ион CrO 4 2- — выпадение желтого осадка хромата бария, разлагающегося в сильнокислотной среде. Применяется как протрава при крашении тканей, дубитель кож, селективный окислитель, реактив в аналитической химии.

Уравнения важнейших реакций:

2K 2 CrO 4 +H 2 SO 4(30%)= K 2 Cr 2 O 7 +K 2 SO 4 +H 2 O

2K 2 CrO 4(т) +16HCl (кон ц., гор.) =2CrCl 3 +3Cl 2 +8H 2 O+4KCl

2K 2 CrO 4 +2H 2 O+3H 2 S=2Cr(OH) 3 ↓+3S↓+4KOH

2K 2 CrO 4 +8H 2 O+3K 2 S=2K[Сr(ОН) 6 ]+3S↓+4KOH

2K 2 CrO 4 +2AgNO 3 =KNO 3 +Ag 2 CrO 4(красн.) ↓

Качественная реакция:

К 2 СгO 4 + ВаСl 2 = 2КСl + ВаCrO 4 ↓

2ВаСrO 4 (т)+ 2НСl (разб.) = ВаСr 2 O 7(p) + ВаС1 2 + Н 2 O

Получение : спекание хромита с поташом на воздухе:

4(Сr 2 Fe ‖‖)O 4 + 8К 2 CO 3 + 7O 2 = 8К 2 СrO 4 + 2Fе 2 O 3 + 8СO 2 (1000 °С)

Дихромат калия K 2 Cr 2 O 7 . Оксосоль. Техническое название хромпик . Оранжево-красный, негигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (оранжевая окраска раствора отвечает иону Сr 2 O 7 2-). В щелочной среде образует К 2 CrO 4 . Типичный окислитель в растворе и при сплавлении. Вступает в реакции ионного обмена.

Качественные реакции — синее окрашивание эфирного раствора в присутствии Н 2 O 2 , синее окрашивание водного раствора при действии атомарного водорода.

Применяется как дубитель кож, протрава при крашении тканей, компонент пиротехнических составов, реагент в аналитической химии, ингибитор коррозии металлов, в смеси с Н 2 SO 4 (конц.) — для мытья химической посуды.

Уравнения важнейших реакций:

4К 2 Cr 2 O 7 =4K 2 CrO 4 +2Cr 2 O 3 +3O 2 (500-600 o C)

K 2 Cr 2 O 7 (т) +14HCl (кон ц) =2CrCl 3 +3Cl 2 +7H 2 O+2KCl (кипячение)

K 2 Cr 2 O 7 (т) +2H 2 SO 4(96%) ⇌2KHSO 4 +2CrO 3 +H 2 O (“хромовая смесь”)

K 2 Cr 2 O 7 +KOH (конц) =H 2 O+2K 2 CrO 4

Cr 2 O 7 2- +14H + +6I — =2Cr 3+ +3I 2 ↓+7H 2 O

Cr 2 O 7 2- +2H + +3SO 2(г) =2Cr 3+ +3SO 4 2- +H 2 O

Cr 2 O 7 2- +H 2 O +3H 2 S (г) =3S↓+2OH — +2Cr 2 (OH) 3 ↓

Cr 2 O 7 2- (конц) +2Ag + (разб.) =Ag 2 Cr 2 O 7 (т. красный) ↓

Cr 2 O 7 2- (разб.) +H 2 O +Pb 2+ =2H + + 2PbCrO 4 (красный) ↓

K 2 Cr 2 O 7(т) +6HCl+8H 0 (Zn)=2CrCl 2(син) +7H 2 O+2KCl

Получение: обработка К 2 СrO 4 серной кислотой:

2К 2 СrO 4 + Н 2 SO 4 (30%) = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 O



 


Читайте:



Альберто Джакометти: биография, творчество и интересные факты

Альберто Джакометти: биография, творчество и интересные факты

Мы на четвертом этаже Музея современного искусства, и перед нами крошечная витрина, в которой находится композиция швейцарского скульптора...

Биография, названия, описание картин

Биография, названия, описание картин

Биография и личная жизнь Фриды Кало . Когда родилась, день и причина смерти Фриды Памятные места. Фрида Кало — «мать селфи»? Цитаты, картины...

Адсорбция и ее характеристики

Адсорбция и ее характеристики

Адсорбция Движущей силой Веществ на поверхности. Физическая адсорбция. Адсорбированный слой связан с поверхностью слабыми межатомными...

Функциональные проекции знаков зодиака Что можно сказать о знаках проекций векторов

Функциональные проекции знаков зодиака Что можно сказать о знаках проекций векторов

Вопросы.1. Действует ли сила тяжести на подброшенное вверх тело во время его подъема? Сила тяжести действует на все тела, независимо от того,...

feed-image RSS