Главная - Ресницы и брови
Реферат: Наследственность, представления о генетическом коде, гены индивидуальности. §7. Наследственная информация и генетический код Как и где закодированы наследственные

102. Как в клетке закодирована наследственная информация?

В полинуклеотидных цепях ДНК и РНК каждые три следующих друг за другом основания составляют триплет.

Триплет - это не случайная группировка из трех нуклеотидов, а такая, при которой каждый триплет управляет включением в молекулу белка совершенно определенной аминокислоты. Количество возможных комбинаций азотистых оснований, образующих триплет, невелико и составляет 4 3 = 64. С помощью триплетов кодируется последовательность 20 аминокислот в белковой молекуле, и для кодирования всех аминокислот достаточно образующихся 64 триплетов.

В качестве примера можно привести несколько триплетов: ГЦУ кодирует аланин, ЦЦУ - пролин, УУУ - фенилаланин. Таким образом, последовательность из триплетов ГЦУ, ЦЦУ, УУУ соответствует участку пол и пептида, содержащего аланин, пролин, фенилаланин. Другими словами, последовательность оснований в ДНК несет в себе информацию о последовательности аминокислот в белковой молекуле. Триплет представляет собой информационную единицу - кодон.

Генетический код является триплетным - три основания кодируют одну аминокислоту; неперекрывающимся - основания, составляющие один триплет, не входят в состав соседних триплетов; вырожденным - одна аминокислота может кодироваться несколькими триплетами, например:

Аланин - ЦУГ, ЦАГ, ЦЦГ лейцин - УАУ, УУЦ, УГУ пролин - ЦЦЦ, ЦАЦ.

Данные по расшифровке генетического кода представлены в табл. 6.

Аминокислоты в белке располагаются в той же последовательности, в какой кодоны располагаются в гене. Это положение получило название колинеарности, т. е. линейного соответствия аминокислот в белке и кодирующих их триплетов на определенном отрезке ДНК.

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.

Элементы правильного ответа

1. Каждый организм индивидуален по своим наследственным особенностям, это относится и к строению белков.

2. При пересадке органов и тканей существует угроза их отторжения вследствие несовместимости белков донора и реципиента.

Ответьте самостоятельно

    В чем проявляется связь между генами и белками организма?

    Что и как кодирует ген?

Элементы правильного ответа

1. Нужно, чтобы ген, ответственный за фенотипический признак, был унаследован организмом.

2. Нужно, чтобы ген был либо доминантным, либо рецессивным, но в таком случае находился в гомозиготном состоянии.

Ответьте самостоятельно

    Какие условия способствуют изменчивости организма?

    Как связаны между собой изменчивость и наследственность?

Элементы правильного ответа

1. Унаследованные признаки проявляются не всегда, например, признак может быть рецессивным и находиться в гетерозиготном состоянии.

2. Проявление фенотипических признаков зависит от многих факторов (например, пенетрантность и экспрессивность генов), поэтому, несмотря на наличие соответствующих генов, унаследованный признак может и не проявиться.

Ответьте самостоятельно

    Какова связь между генотипом и фенотипом организма?

    Можно ли по фенотипу организма определить его генотип? Ответ обоснуйте.

Элементы правильного ответа

1. Данные растения отличаются друг от друга одним признаком – формой семян.

2. Этот признак контролируется одной парой аллельных генов.

Ответьте самостоятельно

    Почему скрещивание растений гороха с желтыми и гладкими семенами с растениями, дающими зеленые и морщинистые семена, называется дигибридным?

    Почему в первом поколении при моногибридном скрещивании признак морщинистости семян не проявляется?

Элементы правильного ответа

1. У гибридов первого поколения проявляется только доминантный признак.

2. Рецессивный признак у этих гибридов подавляется.

Ответьте самостоятельно

    Как формулируется первый закон Менделя?

    Почему по первому закону Менделя в F2 (потомстве от скрещивания гибридов F1) расщепление примерно равно 3:1?

Элементы правильного ответа

1. Законы Менделя носят статистический характер, т.е. подтверждаются на большом числе особей (большой статистической выборке).

2. В реальной жизни у организмов, дающих небольшое количество потомков, встречаются отклонения от законов Менделя, обусловленные статистикой.

3. Возможно неполное доминирование, неаллельные взаимодействия генов.

Ответьте самостоятельно

    Подтверждаются ли законы Менделя в семьях с двумя-тремя детьми? Ответ поясните.

    Чем можно объяснить, что в одной семье дети наследуют от родителей разные признаки?

Элементы правильного ответа

1. Горох – растение с ярко выраженными контрастными аллельными признаками.

2. Горох – самоопыляющееся растение, что позволяет экспериментировать с чистыми линиями и проводить искусственное перекрестное опыление.

Ответьте самостоятельно

    Какие закономерности лежат в основе расщепления по генотипу и фенотипу при моногибридном скрещивании?

    Какие закономерности лежат в основе расщепления по генотипу и фенотипу при дигибридном скрещивании?

    В чем заключается суть гипотезы чистоты гамет?

Элементы правильного ответа

1. У осла и лошади разные кариотипы (у осла 62 хромосомы, у лошади 64). Хромосомы лошади не гомологичны хромосомам осла.

2. Разные хромосомы в мейозе не конъюгируют друг с другом. Поэтому гибриды – мулы – бесплодны.

Ответьте самостоятельно

    Почему количество и нуклеотидный состав хромосом считается видовым признаком организмов?

    В чем заключается биологический смысл конъю-гации хромосом и кроссинговера?

Элементы правильного ответа

1. При полном доминировании гетерозиготные особи в фенотипе проявляют доминантный признак (растение с красными цветками? растение с белыми цветками = растение с красными цветками: АА x аа = Аа ; Аа – красные цветки).

2. При неполном доминировании в гетерозиготном состоянии проявляется промежуточный фенотип (растение с красными цветками? растение с белыми цветками = растение с розовыми цветками: АА x аа = Аа ; Аа – розовые цветки).

Ответьте самостоятельно

    В каких случаях проявляется промежуточный характер наследования?

    Можно ли сказать, что явление неполного доминирования опровергает гипотезу чистоты гамет?

Элементы правильного ответа

Гаметы одного организма – АВ , Аb ; другого – АВ , аВ .

Ответьте самостоятельно

    Какие типы гамет дает особь с генотипом СсВbКК ?

    Запишите в решетку Пеннета результаты скрещивания гетерозиготных по двум признакам особей.

Элементы правильного ответа

1. Анализирующее скрещивание проводится для установления генотипа определенной особи – выявления у нее рецессивного гена.

2. Для этого скрещивают гомозиготную по рецессивному гену особь с особью, генотип которой неизвестен.

Ответьте самостоятельно

    Можно ли по фенотипу установить генотип особи? Ответ поясните.

    Как можно точно установить генотип особи?

Элементы правильного ответа

1. Закон справедлив для генов, локализованных в одной хромосоме.

2. Закон нарушается при кроссинговере гомологичных хромосом.

Ответьте самостоятельно

    При каких условиях происходит кроссинговер?

    Между какими хромосомами кроссинговера не бывает?

    В чем причины комбинативной изменчивости?

Элементы правильного ответа

1. К этим структурам относятся митохондрии, хлоропласты, клеточный центр.

2. В этих органоидах содержится ДНК.

Ответьте самостоятельно

    Существует ли наследственность, передаваемая не через хромосомный аппарат клетки?

    Что общего между ядром, митохондриями и хлоропластами?

Элементы правильного ответа

1. Пол определяется по паре половых хромосом, находящихся в ядерных клетках человека.

2. У мужчин эта пара состоит из набора, обозначаемого ХУ , у женщин – ХХ .

Ответьте самостоятельно

    Что такое гомо- и гетерогаметность?

    Как проявляется сцепленное с полом наследование?

    Почему не бывает котов черепаховой окраски?

Элементы правильного ответа

1. Близкородственные браки.

2. Возраст женщины, рожающей ребенка (38–42 года).

3. Работа родителей на вредных предприятиях (атомных, химических и др.).

Ответьте самостоятельно

    Какие риски увеличения частоты наследственных заболеваний вы можете назвать? Объясните свой выбор.

    Как проявляется синдром Дауна и в чем причины этого заболевания?

Элементы правильного ответа

1. Генные мутации затрагивают один из участков гена. Например, может выпасть или замениться один нуклеотид в триплете. Мутация может оказаться нейтральной, а может – вредной или полезной.

2. Хромосомные мутации могут привести к серьезным последствиям для здоровья. Они связаны с перестройкой хромосом.

3. Геномная мутация затрагивает геном. В результате такой мутации меняется количество хромосом в кариотипе. Если к хромосомному набору прибавляется один или несколько гаплоидных наборов, то явление называется полиплоидией. Явление полиплоидии позволяет преодолеть межвидовую стерильность.

Вопросы уровня С2

Обычно вопросы по генетике не встречаются в экзаменационных работах ЕГЭ на уровне С2. Однако мы приводим задания, соответствующие этому уровню, для лучшего усвоения школьниками генетических понятий.

Элементы правильного ответа

Ошибки допущены в предложениях 2, 5, 6.

В предложении 2 ошибочно указано количество признаков, по которым отличались растения.

В предложении 5 ошибочно указана доля гибридов с желтыми семенами.

В предложении 6 ошибочно назван признак желтой окраски.

Наследственность, представления о генетическом коде, гены индивидуальности.

Аннотация...........................................................................................................................3

Предисловие ..........................................................................................................................4

Наследственность ............................................................................................................6

Условные рефлексы ........................................................................................................7

Теория наследственности Вейсмана .........................................................................8

Методы Гальтона .........................................................................................................9

Хромосомная теория наследственности ..................................................................10

Генетические карты хромосом ..................................................................................10

Генетика пола ...............................................................................................................13

Нехромосомная теоррия наследственности .........................................................14

Молекулярная генетика. Генетическая информация . Генетический код .....14

Наследственность и эволюция ..................................................................................17

Генетика человека .......................................................................................................19

Наследственность и среда.......................................................................................20

Болезни, связанные с мутациями............................................................................21

Лечение и профилактика наследственных болезней............................................24

Генетическая инженерия..........................................................................................25

Гены индивидуальности ............................................................................................28

Заключение .......................................................................................................................30

Терминологический словарь .........................................................................................32

Список используемой литературы ............................................................................36

Аннотация

В своей курсовой работе на тему “ Наследственность. Представления о генетическом коде. Гены индивидуальности ” я рассказала о первых шагах генетики, о сегодняшнем дне этой увлекательной науки и о том, чего ждем мы от нее в ближайшем будущем. Также подробно были рассмотрены достижения современной генетики на молекулярном уровне, которая включает в себя биологию и генетику, законы передачи наследственных признаков и структуру генетического вещества, структуру и функции гена, гены и согласованность клеточных функций, наследственность и эволюцию. В этой работе ведется ознакомление с огромным вкладом генетики в соседние с ней области биологии – учение о происхождении жизни, систематику и эволюцию организмов.

Предисловие

Испокон веков человек стремился узнать, почему от живых организмов рождаются им подобные? И при этом не отмечается абсолютной схожести родителей и потомства ни в физических признаках, ни в характере.

Теперь очевидно, что схожесть родителей и потомков организмов одного вида определяется наследственностью, а их отличительные особенности - изменчивостью. Два свойства – наследственность и изменчивость - характерны не только для человека, но и для всего живого на Земле. Изучением этих важнейших свойств живых существ занимается наука, назяваемая генетикой .

Конечно, на первый взгляд кажется. что все мы можем совершенно спокойно жить, не зная сущности секрктов наследственности, и что все это неважно. Но так ли это на самом деле?

Как, не зная генетики, объяснить, почему обезьяна не превращается в белого медведя, если даже поселить ее на Крайнем Севере, и почему белый медведь, даже если он родился в зоопарке где-нибудь на юге, все раво остается белым? Сумеют ли работники сельского хозяйства в ближайшем будущем получать с каждого гектара сотни центнеров пшеницы? Скажутся через какие-нибудь 50-100 лет последствия атомных взрывов на потомках современных жителей Хиросимы и Нагасаки? Отчего дети похожи на своих родителей? Грозит ли человечеству вымирание, или мы находимся у начала развития земной цивилизации? Почему без вмешательства человека рожь остается рожью, а пшеница – пшеницей? Каковы причины наследственных заболеваний и как с ними бороться? Сколько способен прожить человек? Могут ли все люди на Земле быть гениями?

Есть еще тысячи и тысячи подобных вопросов, имеющих очень важное значение как для отдельных людей, так и для всего человечества, ответить на которые нельзя,

не познав секреты наследственности и не научившись управлять ею. Когда же человек раскроет все эти тайны и поставит знания себе на пользу, он сможет участвовать в решении практических задач сельского хозяйства, медицины, научится управлять эволюцией жизни на нашей планете в целом.

Вместе с тем не надо забывать. что для духовной жизни и целенаправленной деятельности современного человека исключительно важное значение приобретает научное мировоззрение. Среди философских вопросов нового естествознания один из главных – понимание сущности жизни, ее места в мироздании. И только современная молекулярная генетика сумела показать, что жизнь – это поистине материальное, саморазвивающееся явление. отражающее влияние условий внешней среды.

Но она также доказала, что жизнь обладает системностью. которую невозмлжно разложить на составляющие ее физико-химические процессы. Однако. современная наука еще не знает полностью сущности жизни.

Еще один вопрос: от чего зависит настоящее и будущее человечества? Проблема эта интересовала людей много веков назад и в не меньшей степени волнует сегодня. Это и не удивительно, так как человек отличается от всего окружающего мира в первую очередь тем, что испытывает влияние не только биологических законов. Будущее его не в меньшей, если не в большей степени зависит от социального переустройства мира.

Наследственная информация человека передается от поколения к поколению. Все биологические особенности, послужившие основой для появления человека,обладающего сознанием, закодированы в наследственных структурах, и их передача пл поколениям является обязательным условием для существования на Земле человека как разумного существа. Человек как биологический вид – это самое высокое и при этом уникальное “ достижение “ эволюции на нашей планете. И пока еще никто не может сказать с уверенностью или представить неопровержимые доказательства того, что это не касается всей Вселенной.

Эволюция на Земле то идет медленно, то претерпевает скачки, каждый из которых возносит данную ветвь организмов на новый уровень. Среди многих скачков-революций в истории жизни на Земле два, по-видимому,следует считать основными. Во-первых, переход от неорганического мира к органическому, то есть появление жизни, и во-

вторых,возникновение сознания, то есть появление человека. Оба эти явления связаны с накоплением колличественных изменений. вызвавших изменения качественные.

“ Как бы человечество ни ушло по пути прогресса, наш xx в. навсегда останется в его памяти. Люди всегда будут помнить, что этот век был отмечен тремя важнейшими достижениями; люди научились использовать энергию атома, вышли в космос и стали направленно изменять наследственность. Вот три великих успеха, которые наши отдаленные потомки бу-дут помнить даже тогда, когда станут летать от звезды к звезде и победят старость и смерть.”

Но если переспективы ядерной физики преподаются в школе, если космонавтов благодаря телевидению мы знаем в лицо, с биологией дело обстоит хуже. Величайшие ее достижения еще не стали известными широким массам.

Основы генетики были заложены чешским ученым Грегором Менделем в эксперементах, результаты которых были опубликованы в 1865 г. С тех пор генетика не остановилась в своем развитии. И. М. Сеченов, А. П. Богданов, Н. К. Кольцов, Г. Шаде, Эвери, Мак-Леод, Мак-Карти, Д. Уотсон- вот одни из тех великих ученых, которые внесли огромный вклад в науку о наследственности.

В последние годы на фоне общего снижения заболеваемости и смертности увеличился удельный вес врожденных и наследственных болезней. В связи с этим роль генетики в практической медицине значительно возросла.” Без знания генетики нельзя эффективно проводить диагностику наследственных и врожденных заболеваний.”

Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловленно передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза . Как общебиологическое явление наследственность-важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью -возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность ) или навыков обучения, образования, традиций (т. н. социальная , или сигнальная наследственность).Подобное расширение понятия

наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно.

Условные рефлексы . Как мы знаем, условные рефлексы-это индивидуально приобретенные сложные приспособительные реакции организма животных и человека, возникающие при определенных условиях (отсюда название) на основе образования временной связи между условным (сигнальным) раздражителем и подкрепляющим этот раздражитель безусловнорефлекторным актом. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственности в скорости закрепления условных рефлексов и особенностей поведения бесcпорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.

Попытки объяснения явлений наследственности, относящиеся к глубокой древности

(Гиппократ, Аристотель и др.), представляют лишь исторический интерес. Только вскрытие сущности полового размножения позволило уточнить понятие наследственности и связать ее с определенными частями клетки. К середине 19 в. благодаря многочисленным опытам по гибридизации растений (Й. Г. Кельрейтер и др.) накапливаются данные о закономерностях наследственности. В 1865 году Г. Мендель в ясной математической форме сообщил результаты своих экспериментов по гибридизации гороха. Эти сообщения позднее получили название законов Менделя и легли в основу учения о наследственности-менделизма. почти одновременно были сделаны попытки умозрительно понять сущность наследственности. В книге “Изменения домашних животных и культурных растений” Ч. Дарвин (1868 г.) предложил свою “временную гипотезу пангенезиса”, согласно которой от всех клеток организма отделяются их зачатки-геммулы, которые, двигаясь с током крови, оседают в половых клетках и образованиях, служащих для бесполого размножения (почки и др.) . Таким образом, получалось, что половые клетки и почки состоят из громадного количества геммул. При развитии организма геммулы превращаются в клетки того же типа, из которых они образовались. В гипотезе пангенезиса объединены неравноценные представления: о наличии в половых клетках особых частиц, определяющих последующее развитие особи; о переносе их из клеток тела в половые. Первое положение было плодотворным и привело к современным представлениям о корпускулярной наследственности. Второе, давшее основание для представления о наследовании приобретенных признаков, оказалось неверным. Умозрительные теории наследственности развивали также Ф. Гальтон, К. Негели Х. Де Фриз.

Наиболее детализированную спекулятивную теорию наследственности предложил А. Вейсман (1892). Основываясь на накопившихся к тому времени данных по оплодотворению , он признавал наличие в половых клетках особого вещества-носителя наследственности-зародышевой плазмы. Видимые образования клеточного ядра-хромосомы-Вейсман считал высшими единицами зародышевой плазмы-идантами.Иданты состоят из ид , располагю-щихся в хромосоме в виде зерен в линейном порядке. Иды состоят из детерминат, определяющих при развитии особи сорт клеток, и биофор, обусловливающих отдельные свойства клеток. Ида заключает в себе все детерминаты, нужные для построения тела особи данного вида. Зародышевая плазма содержится лишь в половых клетках; соматические, или клетки тела, лишены ее. Чтобы объяснить это коренное различие, Вейсман предполагал, что в процессе дробления оплодотворенного яйца основной запас зародышевой плазмы (а значит, и детерминат) попадает в одну из первых клеток дробления, которая становится родоначальной клеткой так называемого зародышевого пути . В остальные клетки зародыша в процессе “неравнонаследственных делений” попадает лишь часть детерминат; наконец, в клетках останутся детерминаты одного сорта, определяющие характер и свойства именно этих клеток. Существенное свойство зародышевой плазмы-ее большое постоянство. Теория Вейсмана оказалась ошибочной во многих деталях. Однако его идея о роли хромосом и о линейном расположении в них элементарных единиц наследственности оказалась верной и предвосхитила хромосомную теорию наследственности. Логический вывод из теории Вейсмана-отрицание наследования приобретенных признаков. Во всех умозрительных теориях наследственности можно обнаружить отдельные элементы, нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся в начале 20 в. генетике . Важнейшие из них:

а) выделение в организме отдельных признаков или свойств, наследование которых может быть проанализировано соответствующими методами;

б) детерминация этих свойств особыми дискретными единицами наследственности, локализованными в структурах клетки (ядра) (Дарвин называл их геммулами, Де Фриз-пангенами, Вейсман-детерминантами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин ген .

“ Ген-элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты - ДНК (у некоторых вирусов- рибонуклеиновой кислоты-РНК). Каждый ген определяет строение одного из белков живой клетки и тем самым участвует в формировании п ризнака или свойств организма..”

Методы Гальтона . Особняком стояли попытки установления закономерностей наследственности статистическими методами. Один из создатеей биометриии -Ф. Гальтон применил разработанные им методы учета корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы наследственности (1889):

Регрессии, или возврата к предкам

Анцестральной наследственности, то естьдоли наследственности предков в наследственности потомков.

Законы носят статистический характер, они применимы лишь к совокупностям организмов и не раскрывают сущности и причин наследственности, что могло быть достигнуто только с помощью экспериментального изучения наследственности разными методами и прежде всего гибридологическим анализом , основы которого были заложены еще Менделем. Так были установлены закономерности наследования качественных признаков: моногибридное- различие между скрещиваемыми формами зависит лишь от одной пары генов, дигибридное- от двух, полигибридное- от многих. При анализе наследования количественных признаков отсутствовала четкая картина расщепления, что давало повод выделять особую, так называемую слитную наследственность и объяснять ее смещением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и биометрический анализ наследования количественных признаков показал, что и слитная наследственность сводится к дискретной, но наследование при этом полигенное. В этом случае расщепление трудно обнаружить, так как оно ппроисходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней Среды. Таким образом, хотя признаки можно разделять на качественные и количественные, термины “кчественная” и “количественная” наследственность не оправданы, так как обе категории наследственности принципиально одинаковы.

Развитие цитологии пртивело к постановке вопроса о материальных основах наследственности. Впервые мысль о роли ядра как носителя наследственности была сформулирована

О. Гертвигом (1884) и Э. Страсбургером (1884) на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипоьезу о их качественном различии. Он же, а также Э. ван Бенедет (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в мейозе . Американский ученый У. Сеттон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании приизнаков. Однако подлинное обоснование хромосомной теории наследственности было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофилебыло установлено нарушениет независимого распределения признаков-их сцепленное наследование. Это явление было объяснено сцеплением генов, то есть нахождением генов, определяющих эти признаки, в одной определенной паре хромосом. Изучение частоты рекомбинаций между сцеплеными генами (в результате кроссинговера ) позволило составить карты расположения генов в хромосомах.

Генетические карты хромосом - схемы относительного располо­жения сцепленных между собой на­следств. факторов - генов. Генетические карты хромосом ото­бражают реально существующий линей­ный порядок размещения генов в хромо­сомах и важны как в теоретических исследо­ваниях, так и при проведении селекцион­ной работы, т. к. позволяют сознательно подбирать пары признаков при скрещи­ваниях, а также предсказывать особенности наследования и проявления раз­личных признаков у изучаемых орга­низмов. Имея Генетические карты хромосом, можно по насле­дованию «сигнального» гена, тесно сцеп­ленного с изучаемым, контролировать. передачу потомству генов, обусловли­вающих развитие трудно анализируемых признаков; напр., ген, определяющий сморщенный эндосперм у кукурузы и на­ходящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения. Многочис­ленные факты отсутствия (вопреки законам Менделя) независимого рас­пределения призна

ков у гибридов второ­го поколения были объяснены хромосом­ной теорией наследственности. Гены, расположенные в одной хромосоме, в большинстве случаев наследуются сов­местно и образуют одну группу сцепле­ния, количество к-рых, таким образом, соответствует у каждого организма гаплоидному числу хромосом. Американский генетик Т. X. Морган показал, однако, что сцеп­ление генов, расположенных в одной хромосоме, у диплоидных организмов не

абсолютное; в нек-рых случаях перед образованием половых клеток между однотипными, или гомологичными, хромосомами происходит об­мен соответств. участками; этот процесс носит назв. перекреста, или кроссинговера . Обмен участками хромосом (с на­ходящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем выше вероят­ность кроссинговера и, следовательно, рекомбинации). Генетич. анализ позво­ляет обнаружить перекрест только при различии гомологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Генетических картах хромосом выражают как процент крос­синговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему кол-ву изу­ченных особей); единица этого расстоя­ния - морганида - соответствует часто­те кроссинговера в 1 %.

Итак, выделим основные положения хромосомной теории наследственности :

1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое чис ло генов, набор генов каждой из негомологичных хромосом уникален.

2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).

3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.

4. Сцепление не абсолютно, так как в профазе мейоза может происходить кроссинговер и гены, находящиесяв одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления. и наоборот. Расстояние между генами измеряется в процентах кроссинговера. 1% кроссинговера соответтствует одной морганиде.

Генетические карты хромосом составляют для каждой пары гомологичных хромосом. Группы сцеп­ления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокра­щённые назв. мутантных генов, их рас­стояния в морганидах от одного из концов хромосомы, принятого за нулевую точ­ку, а также место центромеры . Соста­вить Генетические карты хромосом можно только для объек­тов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локали­зованных в её 4 группах сцепления, у кукурузы - около 400 генов, распреде­лённых в 10 группах сцепления (рис. 1). У менее изученных объектов число об­наруженных групп сцепления

меньше гаплоидного числа хромосом. Так, у до­мовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на са­мом деле их 20); у кур изучено пока все­го 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом.

У бактерий, к-рые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепле­ния (рис. 2). При переносе генетич. ма­териала из клетки-донора в клетку-ре­ципиент, например при конъюгации , коль­цевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин). Искусственно прерывая про­цесс конъюгации, можно по возникшим типам рекомбинантов установить, ка­кие гены успели перейти в клетку-реци­пиент. В этом состоит один из методов построения Генетических карт хромосом бактерий, детально разработанных у ряда видов. Ещё более детализированы Генетические карты хромосом нек-рых бакте­риофагов

Генетика пола . Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории наследственности были получены при изучении наследования, сцепленного с полом . Ранее цитологи открыли в хромосомных наборах ряда видов жиивотных особые, так называемые половые хромосомы , которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы(XX), а самцы-разные(XY), в других - самцы-2 одинаковые(XX, или ZZ), а самки - разные(XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным , с разными - гетерогаметным . Женский пол гомогаметен, а мужской гетерогаметен у некоторых насекомых (в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков у дрозофилы наследуется в

строгом соответствии с передачей потомству X-хромосом. Самка дрозофилы, проявляюща

рецесивный признак, например белую окраску глаз, в силу гомозиготности по этому гену, находящимуся в X-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою X-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передает его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою X(=Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения X-хромосом концами; тогда самки передают сцепленные X-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим ). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии - от отца к сыну (такое наследование называется голандрическим ). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений наследственности, то есть изменчивости.

Нехромосомная теория наследственности . Первенствующая роль ядра и хромосом в наследственности не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению.Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери). Таким образом, различают ядерную наследственность , связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью), и внеядерную наследственность , зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении , но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями .

Молекулярная генетика . Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному развитию молекулярной генетики . Впервые Н. К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения “наследственных молекул”.В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислотиы (ДНК) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация ,заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов ин­формация о составе, строении и харак­тере обмена составляющих организм ве­ществ (прежде всего белков и нуклеино­вых кислот) и связанных с ними функ­циях. У многоклеточных форм при по­ловом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток - гамет , единственная функция к-рых - передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи. Генетическая информация заключена преимущественно в хромосо­мах, где она зашифрована в определён­ной линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты - ДНК (генетический код). Генетический код - это система зашиф­ровки наследственной информации в молекулах нуклеиновых кислот, реали­зующаяся у животных, растений, бакте­рий и вирусов в виде последовательности нуклеотидов . В природных нуклеино­вых кислотах - дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)-встре­чаются 5 распространённых типов нуклео­тидов (по 4 в каждой нуклеиновой к-те), разлчающихся по входящему в их со­став азотистому основанию. В ДНК встречаются основания:

аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присут­ствует урацил (У). Кроме них, в составе нуклеиновых к-т обнаружено ок. 20 ред­ко встречающихся (т. н. неканонических, или минорных) оснований, а также не­обычных Сахаров. Так как количество кодирую­щих знаков Генетического кода (4) и число разновид­ностей аминокислот в белке (20) не сов­падают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокис­лоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 4 2 = 16, но этого также недостаточ­но для зашифровки всех аминокислот. Американский учёный Г. Гамов предложил (1954) модель т р и п л е т н о г о генетического кода, т. е. такого, в котором 1 аминокислоту коди­рует группа из трёх нуклеотидов, называемых кодоном. Число возможных триплетов равно 4 3 = 64, а это более чем втрое пре­вышает число распространённых амино­кислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует несколько кодонов (так называемая вы­рожденность кода). Было предложено много различных моделей генетического кода, из которых серьёзного внимания заслуживали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудни­ками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены след. осн. за­кономерности, касающиеся генетического кода: 1) между последовательностью нуклеотидов и кодируемой последовательностью ами­нокислот существует линейное соответ­ствие (коллинеарность генетического кода); 2) считыва­ние кода начинается с определённой точки; 3) считывание идёт в одном на­правлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) генетический код, как правило, яв­ляется вырожденным, т. е. 1 аминокис­лоту кодируют 2 и более триплетов-си­нонимов (вырожденность генетического кода умень­шает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём;

8) код в живой природе универсален (за нек-рыми исключениями). Универсаль­ность генетического кода подтверждается эксперимен­тами по синтезу белка in vitго. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из другого организма, далеко отстоящего от первого в эволю­ционном отношении (например, пророст­ков гороха), то в такой системе будет идти белковый синтез. Благодаря ра­ботам амер. генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах..

Из 64 кодонов у бактерий и фагов 3 кодона - УАА, УАГ и УГА - не коди­руют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы , т. е. сигнализируют о завер­шении синтеза полипептида. Их наз. тер­минирующими кодонами. Существуют также 3 сигнала о начале синтеза - это т. н. инициирующие колоны - АУГ, ГУГ и УУГ,- к-рые, будучи включён­ными в начале соответствующей инфор­мационной РНК (и-РНК), определяют включение формилметионина в первое положение синтезируемой полипептид­ной цепи. Приведённые данные справед­ливы для бактериальных систем; для высших организмов многое ещё не ясно. Так, кодон УГА у высших организмов мо­жет быть значащим; не совсем понятен также механизм инициации полипептида.

Реализация генетического кода в клетке происходит в два этапа. Первый из них протекает в ядре; он носит назв. транскрипции и за­ключается в синтезе молекул и-РНК на со­ответствующих участках ДНК. При этом последовательность нуклеотидов ДНК « переписывается » в нуклеотидную после­довательность РНК. Второй этап - трансляция - протекает в цитоплазме, на рибосомах; при этом последователь­ность нуклеотидов и-РНК переводится в последовательность аминокислот в белке; этот этап протекает при участии транспортной РНК (т-РНК) и соответ­ствующих ферментов.

Генетическая информация реализуется в ходе онтогенеза - развития особи - ее передачей от гена к признаку. Все клетки организма возникают в результате деле­ний единственной ис

ходной клетки - зи­готы - и потому имеют один и тот же набор генов - потенциально одну и ту же генетическую информацию. Специфичность клеток разных тка­ней определяется тем, что в них активны разные гены, т. е. реализуется не вся информация, а только её часть, необходимая для функ­ционирования данной ткани.

По мере изучения наследственности на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица наследственности, а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген-входящий в состав хромосомы участок молекулы ДНК, способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер)было показано, что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся еще в 30-х гг. А. C. Серебровским и Н. П. Дубининым на основе данных генетического анализа.

В 1967-69 гг. был осуществлен синтез вирусной ДНК вне организма, а также химический синтез гена дрожжевой аланиновой транспортной РНК. Новой областью исследования стала наследственность соматических клеток в организме и в культурах тканей. Открыта возможность экспериментальной гибридизации соматических клеток разных видов. В связи с достижениями молекулярной биологии явления наследственности приобрели ключевое значение для понимания ряда биологических процессов, а также для множества вопросов практтики.

Наследственность и эволюция . Еще Дарвину было ясно значение наследственности для эволюции организмов. Установление дискретной природы наследственности устранило

одно из важных возражений против дарвинизма: при скрещивании особей, у которых появились наследственные изменения, последние должны якобы “ разбавляться “ и ослабевать в своем направлении. Однако, в соответствии с законами Менделя,они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определенных условиях. В популяциях яв-

ления наследственности предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях, генетико-автоматических процессах и др. На это впервые указал С. С. Четвериков (1926 г.) , экспериментально доказавший накопление мутаций внутри популяции. И. И. Шмальгаузен (1946 г.) выдвинул положение о “ мобилизационном ре

зерве наследственной изменчивости “ как материале для творческой деятельности естественного отбора при изменении условий внешней среды. Показано значение разных типов изменений наследственности в эволюции. Эволюция понимается как постепенное и многократное изменение наследственности вида. в то же время наследственность, обеспечивающая постоянство видовой организации, -это коренное свойство жизни, связанное с физико-химической структкрой элементарных единиц клетки, прежде всего ее хромосомного аппарата, и прошедшее длительный период эволюции.

Принципы организации этой структуры (генетический код), по-видимому, универ­сальны для всех живых существ и рас­сматриваются как важнейший атрибут жизни.

Под контролем наследственности находится и онтоге­нез, начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях среды. Отсюда различие меж­ду совокупностью генов, получаемых организмом от родителей, - генотипом и комплексом признаков организма на всех стадиях его развития - феноти­пом . Роль генотипа и среды в формиро­вании фенотипа может быть различна.

Но всегда следует учитывать генотипически обусловленную норму реакции организма на влияния среды. Измене­ния в фенотипе не отражаются адекват­но на генотипич. структуре половых кле­ток, поэтому традиционное представле­ние о наследовании приобретённых при­знаков отвергнуто, как не имеющее фак-тич. основы и неправильное теоретически. Механизм реализации наследственности в ходе разви­тия особи, по-видимому, связан со сме­ной действия разных генов во времени и осуществляется при взаимодействии ядра и цитоплазмы, в к-рой происходит синтез тех или иных белков на основе програм­мы, записанной в ДНК и передающей­ся в цитоплазму с информационной РНК.

Закономерности наследственности имеют огромное значение для практики сельского х-ва и медици­ны. На них основываются выведение но­вых и совершенствование существующих сортов растений и пород животных. Изу­чение закономерностей наследственности привело к науч­ному обоснованию применявшихся ранее эмпирически методов селекции и к раз­работке новых приёмов (эксперименталь­ный мутагенез , гетерозис , полиплоидия и др.).

Генетика человека - это отрасль ге­нетики, тесно связанная с антропологией и медициной. Генетика человека условно подразделяют на антропогенетику, изучаю­щую наследственность и изменчивость нормальных признаков человеческого организма, и генетику медицинскую, к-рая изучает его наследственную пато­логию (болезни, дефекты, уродства" и др.). Генетика человека связана также с эволюционной тео­рией, так как исследует конкретные меха­низмы эволюции человека и его место в природе, с психологией, философией, социологией. Из направлений Генетика человека интенсивно развиваются питогенетика, биохимич. генетика, иммуногенетика, генетика высшей нервной деятель­ности, физиологич. генетика.

В Генетике человека вместо классич. гибридологиче­ского анализа применяют генеало­гический метод , к-рый состоит в анализе распределения в семьях (точ­нее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип на­следования, частоту и интенсивность проявления признака и т. д. При анализе семейных данных получают также циф­ры эмпирического риска , т. е. вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогич. методом уже по­казано, что более 1800 морфологич., биохимич. и др. признаков человека наследуется по законам Менделя. Например, тёмная окраска кожи и волос доминирует над светлой; понижен­ная активность или отсутствие нек-рых ферментов определяется рецессивными генами, а рост, вес, уровень интеллекта и ряд др. признаков - «полимерными» генами, т. е. системами из мн. генов. Мн. признаки и болезни человека, на­следующиеся сцепленно с полом, обуслов­лены генами, локализованными в Х- или У- хромосоме. Таких генов известно ок. 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюко-зо-6-фосфат-дегидрогеназы, цветовой сле­поты и др. Др. метод генетики человека- близне­цевый м е т о д . Однояйцовые близнецы (ОБ) развиваются из одной яйцеклетки, оплодотворённой одним спермием; поэтому набор генов (генотип) у ОБ идентичен. Разнояйцевые близнецы (РБ) развиваются из двух и более яйцеклеток, оплодотворённых разными спермиями; поэтому их геноти­пы различаются так же, как у братьев и сестёр.

Наследственность и среда .

Гены проявляют свои функции не в пустоте, а в такой высокоорганизованной системе, как клетка, которая сама находится в определенном окружении – среди других клеток или во внешней среде. Каков бы ни был генотип, его свойства проявляются лишь в той степени, в какой это позволяют окружающие условия.

Растение, выращиваемое в темноте, остается белым и хилым; оно неспособно извлекать из углекислого газа энергию, необходимую для обмена веществ, даже в том случае, когда все его клетки содержат генетическую информацию. необходимую для развития хлоропластов, а также синтеза и деятельности хлорофилла. В равной мере генетические потенции, определяющие цвет глаз, проявляются только в особых условиях, которые создаются в клеткахрадужной оболочки; эти потенции реализуются при условии, если предварительно благодаря действию многочисленных генов сам глаз дорстаточно развился.

Наконец, фенотип организма представляет собой результат взаимодействий между генотипом и средой в каждый данный момент его жизни и на каждом этапе его индивидуального развития.

Действия среды могут быть отнесены к двум типам, хотя в реальной обстановке они часто налагаются друг на друга. С одной стороны, это сильные воздействия, приводящие к полному или частичному подавлению выражения генетических потенций с другой – слабые влияния, выражающиеся лишь в небольших изменениях степени их выражения. Первый тип воздействий зависит от случайных обстоятельств. второй обычен и неазрывно связан с функционированием живой материи.

Индивидуальное развитие высшего организма начинается со стадии зиготы. Наследственные потенции, получаемые им от родителей, проявляются лишь постепенно, в ходе длительного и сложного процесса развития. и начиная с первых делений дробления яйца, в их реализации принимает участие среда.

Для генов будущего организма исходной средой служит цитоплазма яйца, происходящего от материнского организма и воплощающего в себе клеточную непрерывность. Этого может оказаться достаточно, чтобы ориентировать развитие эмбриона в направлении, не совпадающем с его собственным генотипом.

Сравнение внутрипарных различий между однояйцевыми и разнояйцевыми близнецами по­зволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близ­нецовых исследованиях особенно важен показатель конкордантности , выражающий (в %) вероятность облада­ния данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминиро­ван преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови, к-рые детерминирова­ны только генетически, у ОБ равна 100%. При шизофрении конкордантность у ОБ достигает 67%, в то время как у РБ - 12,1%; при врождённом слабоумии (олигофрении) - 94,5% и 42,6% соответст­венно. Подобные сравнения проведены в отношении ряда заболеваний. Таким образом, исследования близнецов показывают, что вклад наследственности и среды в раз­витие самых разнообразных признаков различен и признаки развиваются в ре­зультате взаимодействия генотипа и внеш­ней среды. Одни признаки обусловлены преим. генотипом, при формировании др. признаков генотип выступает в каче­стве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).

Болезни, связанные с мутациями . Геном человека включает несколько миллио­нов генов, способных к тому же по-раз­ному влиять на развитие признаков. В результате мутаций и перекомбинации генов возникает присущее человеку раз­нообразие по самым разным признакам. Гены человека мутируют каждый с часто­той от 1 на 100 000 до 1 на 10 000 000 га­мет на поколение. Распространение му­таций среди больших групп населения изучает популяционная генетика человека, позволяю­щая составить карты распространения ге­нов, определяющих развитие нормальных признаков и наследственных болезней. Особый интерес для популяционной генетики человека представляют изоляты - группы населения, в к-рых по каким-либо причинам (географич., экономич., социальным, ре­лигиозным и др.) браки заключаются чаще между членами группы. Это при­водит к повышению частоты кровного родства вступающих в брак, а значит, и вероятности того, что рецессивные гены перейдут в гомозиготное состояние и про­явятся, что особенно заметно при мало­численности изолята.

Исследования в области Генетики человека продемон­стрировали наличие естественного от­бора в человеческих популяциях. Одна­ко отбор у человека приобретает специфические черты: он интенсивно действует только на эмбриональной стадии (например, самопроизвольные аборты - отражение такого отбора). Отбор в человеческом об­ществе осуществляется посредством диф­ференциальной брачности и плодовито­сти, то есть в результате взаимодействия социальных и биологических факторов. Му­тационный процесс и отбор обусловли­вают огромное

разнообразие (полимор­физм) по ряду признаков, присущее чело­веку, что делает его с биологич. точки зрения необычайно пластичным и при­способленным видом.

Широкое использование в генетике человека цитологических методов способствовало развитию цитогенетики , где основной объект исследова­ния - хромосомы , т. е. структуры клеточ­ного ядра, в к-рых локализованы гены. Установлено (1946), что хромосомный набор в клетках тела человека (сомати­ческих) состоит из 46 хромосом, причём женский пол определяется наличием двух Х-хромосом, а мужской - Х-хро-мосомы и У-хромосомы. В зрелых поло­вых клетках находится половинное (гаплоидное) число хромосом. Митоз, мейоз и оплодотворение поддерживают преем­ственность и постоянство хромосомного набора как в ряду клеточных поколений, так и в поколениях организмов. В резуль­тате нарушений указанных процессов могут возникать аномалии хромосомного набора с изменением числа и структуры хромосом, что приводит к возникновении хромосомных болезней, к-рые нередко выражаются в слабоумии, развитии тя­жёлых врождённых уродств, аномалий половой дифференцировки или обуслов­ливают самопроизвольные аборты.

История изучения хромосомных болезней берет начало с клинических исследований, проводившихся задолго до описания хромосом человека и открытия хромосомных аномалий.

Хромосомные болезни - болезнь Дауна, синдромы: Тернера, Клайнфелтера, Патау, Эдвардса.

С разработкой метода авторадиографии стала возможной идентификация некоторых индивидуальных хромосом, что способствовало открытию группы хромосомных болезней, связанных со структурными перестройками хромосом. Интенсивное развитие учения о хромосомных болезнях началось в 70х годах 20 в. после разработки методов дифференциального окрашивания хромосом.

Классификация хромосомных болезней основана на типах мутаций вовлеченных в них хромосом. Мутации в половых клетках приводят к развитию полных форм хромосомных болезней, при которых все клетки организма имеют одну и ту же хромосомную аномалию.

В настоящее время описано 2 варианта нарушений числа хромосомных наборов - тетраплоидия и триплодия . Другая группа синдромов обусловлена нарушениями числа отдельных хромосом – трисомиями (когда имеется добавочная хромосома в диплоидном наборе) или

моносомия (одна из хромосом отсутствует)..Моносомии аутосом несовместимы с жизнью. Трисомии - более часто встречающаяся паталогия у человека. Ряд хромосомных болезней связан с нарушением числа половых хромосом.

Самая многочисленная группа хромосомных болезней- это синдромы, обусловленные структурными перестройками хромосом. Выделяют хромосомные синдромы так называемых

частичных моносомий (увеличение или уменьшение числа отдельных хромосом не на целую хромосому, а на ее часть).

В связи с тем, что подавляющая часть хромосомных аномалий относится к категории летальных мутаций, для характеристики их количественных параметров используются 2 показателя - частота распространениея и частота возникновения.Выяснено, что около 170 из 1000 эмбрионов и плодов погибают до рождения, из них около 40% - вследствие влияния хромосомных нарушений. Тем не менее значительная часть мутантов (носителей хромосомной аномалии) минует действие внутриутробного отбора.

Но некоторые из них погибают в раннем, до достижения пубертатного возраста. Больные с аномалиями половых хромосом из -за нарушений полового развития, как правило, не оставляют потомства.Отсюда следует все аномалии можно отнести к мутациям. Показано,что в общем случае хромосомные мутации почти полностью изчезают из популяции через 15 - 17 поколений.

Для всех форм хромосомных болезней общим признаком является множественность нарушений (врожденные пороки развития). Общими проявлениями хромосомных болезней являются: задержка физического и психомоторного развития, умственная отсталость, костно-мышечные аномалии, пороки сердечно - сосудистой, мочеполовой, нервной и др. систем, отклонение в гормональном, биохимическом и иммунологическом статусе и др.

Степень поражения органов при хромосомных болезней зависит от многих факторов - типа хромосомной аномалии, недостающего или избыточного материала индивидуальной хромосомы, генотипа организма, условий среды, в котором развивается организм.

Этиологическое лечение хромосомных болезней в настоящее время не разработано.

Разработка методов пренатальной диагностики делает этот подход эффективным в борьбе не только с хромосомными, но и с др. наследственными болезнями.

Лечение и профилактика наследственных болезней . Успехи в развитии генетики человека сделали воз­можными предупреждение и лечение наследственных заболеваний . Один из эффективных методов их предупрежде­ния - медико-генетическое консульти­рование с предсказанием риска появле­ния больного в потомстве лиц, страдаю­щих данным заболеванием или имеющих больного родственника. Достижения био­химической генетике человека раскрыли первопричину (мо­лекулярный механизм) множество наследст­венно обусловленных дефектов, аномалий обмена веществ, что способствовало раз­работке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения мн. прежде неизле­чимых наследств, болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вслед­ствие генетического дефекта, или в состав­лении специальных диет, из к-рых уст­ранены вещества, оказывающие токсическое действие на организм в результате на­следственно обусловленной неспособ­ности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофонда человечества, осуществляются через сис­тему медико-генетических консультаций. Основная цель медико-генетического консультирова­ния - информировать заинтересованных лиц о вероятности риска появления в по­томстве больных. К медико-генетическим меро­приятиям относится также пропаганда ге­нетических знаний среди населения, т. к. это способствует более ответственному под­ходу к деторождению. Медико-генетическая консультация воздерживается от мер при­нудительного или поощрительного харак­тера в вопросах деторождения или вступ­ления в брак, принимая на себя лишь функцию информации. Большое значе­ние имеет система мер, направленных на создание наилучших условий для прояв­ления положит, наследств, задатков и предотвращение вредных воздействий среды на наследственность человека.

Генетика человека представляет собой естественнона­учную основу борьбы с расизмом, убеди­тельно показывая, что расы - это формы адаптации человека к конкретным усло­виям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойст­венных всем расам. Генетика человека показывает, что все расы равноценны (но не одинаковы) с биологической точки

зрения и обладают равными возможностями для развития, определяемого не генетическими а социально-историческими условиями. Констатация биологических наследственных различий

между отдельными людьми или расами не может слу­жить основанием для каких-либо выводов мо­рального, юридического или социального порядка, ущемляющих права этих людей или рас. Данные генетики человека пока­зали, что довольно часты гены, опреде­ляющие развитие разнообразных уродств и наследственных заболеваний: наследст­венных болезней обмена, психических и др. Уменьшению вероятности появления в семьях наследственно больных детей призваны способствовать медико-генети­ческие консультации. Ранняя диагности­ка наследственных заболеваний позволяет при­менить необходимые методы лечения. Существенно важен учёт наследственности в реакции разных людей на лекарства и другие химические вещества, а также

в иммунология, реак­циях. Бесспорна роль молекулярно-генетических механизмов в этиологии злокачественных опухолей.

Явления наследственности предстают в разной форме в зависимости от уровня жизни, на котором они изучаются (молекула, клетка, орга­низм, популяция). Но в конечном счёте наследственность обеспечивается самовоспроизведением материальных единиц наследственности (генов и цито­плазматических элементов), молекулярная структура которых известна. Закономерный матричный характер их ауторепродукции нарушаетсяи мутациями отдельных генов или перестройками генетических систем в це­лом. Всякое изменение в ауторепродуцирующемся элементе наследуется кон­стантно.

Генетическая инженерия.

Что такое генетическая инженерия? Генетическая инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генетической инженерии - теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Из истории генетической инженерии . Генетическая инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или (рекДНК). Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40.

Строение рекомбинантной ДНК . Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные

или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.

Этапы генного синтеза . Гены, подлежащие клонированию, могут быть получены в составе фрагментов путем механического или рестриктазного дробления тотальной ДНК. Но структурные гены, как правило, приходится либо синтезировать химико-биологическим путем, либо получать в виде ДНК-копии информационных РНК, соответствующих избранному гену. Структурные гены содержат только кодированную запись конечного продукта (белка, РНК), и полностью лишены регуляторных участков. И поэтому не способны функционировать в клетке-хозяине.

При получении рекДНК образуется чаще всего несколько структур, из которых только одна является нужной. Поэтому обязательный этап составляет селекция и молекулярное клонирование рекДНК, введенной путем трансформации в клетку-хозяина. Существует 3 пути селекции рекДНК: генетический, иммунохимический и гибризационный с мечеными ДНК и РНК.

Практические результаты генной инженерии . В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.

Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.

Теоретическое значение генетической инженерии . За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата. Генная инженерия имеет большие перспективы в лечении наследственных болезней, которых на сегодняшний день зарегестрировано около 2000. Г.и. призвана помогать исправлять ошибки природы.

Достигнуты большие успехи в клонировании . Клон , или группа клеток, образуется делением первой клетки. Каждая соматическая клетка человека несет один и тот же набор ген, всю

наследственную информацию. Если она начнет делиться, то вырастет новый организм т.е. с таким же генотипом. В 1997 г. доктор Ян Вилмут в Шотландии в г. Эддинбурге получил с группой ученых ягненка Долли (искусственным путем) . Этот ягненок не имеет отца, так как клетка была взята у матери. Возникло опасение, что эксперименты по генной инженерии могут быть опасны для человечества. В 1974 г. спец. Комиссия американских биологов опубликовала сообщение генетикам мира, в котором рекомендовала воздержаться от экспериментов с некоторыми видами ДНК, пока не будут разработаны меры безопасности.

Но все-таки необходимо было разработать ограничительные меры. 30 июля 1997 г. комитет по науке в Конгрессе США проголосовал за полный запрет экспериментов, связанных с клонированием людей. Президент еще раньше запретил выделение денег на эти эксперименты.

В России в 1996 г. Государственная Дума приняла закон о государственном регулировании в области ген. инженерии.

Гены индивидуальности .

“ Одно из чудес, которое мы наблюдаем ежедневно и ежечасно, - неповторимая индивидуальность каждого человека, живущего на Земле. Ученым долгое время не удавалось найти ключ к этой загадке.

Известно, что вся информация о строении и развитии живого организма “записана” в его геноме- совокупности генов.Считается, что внутри одного вида геномные различия очень незначительны.” Например, ген окраски глаз у человека отличается от гена окраски глаз у кролика, однако у разных людей этот ген устроен одинаково и состоит ииз одинаковых последовательностей ДНК.

Существует огромное разнообразие белков, из которых построены живые организмы-и удивительное многообразие генов, кодирующих эти белки. В геноме каждого человека есть какие-то области, определяющие его индивидуальность. Некоторые гены человека отличаются от генов крысы всего несколько нуклеотидами-знаками генетического кода. Другие гены у них разные, но одинаковые у двух людей. Изменчивость, связанная с существованием генов, подобных генам группы крови у человека, также не объясняет огромного разнообразия природных белков.

В 1985 г. были обнаружены в геноме человека особые сверхизменчивые участки-мини-сателлиты. Эти участки ДНК оказались индивидуальными у каждого человека и с их помощью удалось получить “портрет “ его ДНК.т. е. определенных генов.

Этот “портрет”- сложное сочетание темных и светлых полос, похожее на слегка размытый спектр, или на клавиатуру из темных и светлых клавиш разной толщины. Это сочетание называют ДНК-отпечатками (по аналогии с отпечатками пальцев) или “ДНК-профиль”

“На основе сверхизменчивых последовательностей ДНК были сконструированы специальные маркеры, или зонды ДНК.” Маркеры, помеченные радиоактивным изотопом, добавляют к обработанным специальным образом ДНК, с которыми первые находят сходные сверхизменчивые участки на ДНК и присоединяются к ним. Эти участки становятся радиоактивными, так что их можно выявить с помощью радиоавтографии. У каждого человека распределение таких

мест индивидуально. Там, где маркеры присоеденились к большому числу сверхизменчивых участков на ДНК (много радиоавтографических сигналов)- это широкая темная полоса. Где мало мест присоединения,- узкая темная полоса. Где их совсем нет,- светлая полоса.

Итак, ученые обнаружили, что геном человека буквально “насыщен” сверхизменчивыми последовательностями ДНК.Стали обнаруживаться неуловимые прежде индивидуальные последовательности ДНК.

После разгадки индивидуальности человека, встал вопрос: обладают ли такой же индивидуальностью другие организмы? Существуют ли у них сверхизменчивые последовательности ДНК? Ученые должны были найти универсальный маркер, одинаково пригодный как для бактерий, так и для человека. Им оказался бактериофаг (вирус бактерий). Это открытие было чрезвычайно важно для работы генетиков и селекционеров.

Выяснилось, что с помощью отпечатков ДНК можно провести идентификацию личности гораздо более успешную, чем это позволяли сделать ттрадиционные методы отпечатков пальцев и анализ крови. Вероятность ошибки - одна на несколько миллионов.Новым открытием срразу же воспользовались криминалисты, которые быстро и эффективно применили его на практике.

С помощью ДНК-отпечатков можно расследовать преступления не только настоящего времени, но и глубокого прошлого.

“ Генетические экспертизы по установлению отцовства-наиболее частый повод обращения судебныхорганов к генетической дактилоскопии. В судебные учреждения обращаются мужчины, сомневающиеся в своем отцовстве, и женщины, желающие получить развод на основании

того, что их муж не отец ребенка. Идентификацию материнства можно проводить по отпечаткам ДНК матери и ребенка в отсутствии отца, и наоборот. для установления отцовства достаточно ДНК-отпечатков отца и ребенка. При наличии же материала матери, отца и ребенка ДНК-отпечатки выглядят не сложнее, чем картинка из школьного учебника: каждая полоса на ДНК-отпечатке ребенка может быть “адресована” либо отцу, либо матери.”

Наиболее интересны прикладные аспекты генетической дактилоскопии.Встает вопрс паспортизации по отпечаткам ДНК прееступников-рецидивистов,введения в картотеки следственных органов данных об отпечатках ДНК нааряду с описанием внешности. особых примет, отпечатков пальцев.

Заключение

Все что мы знаем сегодня о механизмах наследственности, действующих на всех уровнях организации живого (особь, клетка, субклеточная структура, молекула), удалось установить благодаря теоретическому и техническому вкладу многих дисциплин - биохимии, кристаллографии, физиологии, бактериологии, вирусологиию, цитологии... и, наконец, генетики. В этой кооперации генетика выступала в качестве ведущего начала исследований, унифицировавшего получаемые результаты. Генетическое истолкование биологических явлений имеет в сущности объединяющее значение, как это хорошо выражено в ставшем уже классическим аффоризме Ж. Моно: “Все, что верно для бактерии, верно и для слона”. На современном этапе биологических знаний вполне обоснованно считать, что все свойства организмов, включая человека, могут быть всецело объяснены (если уже не объяснены) особенностямии их генов и тех белков, которые ими кодируются. Поэтому к какой бы отрасли биологии ни относилось изучаемое явление- будь то эмбриология, физиология, паталогия или иммунология. теперь уже невозможно не учитывать его генетические основы. За каждым явлением скрывается его строгая детерминация- группа работающих генов и белков, осуществляющих свои функции.

Эти факты и представляют собой в совокупности солидный вклад генетики в понимание первичных механизмов жизни. Но значение генетики этим не исчерпываеттся. оно связано также с внутренними особенностями генетического метода.

Генетик имеет дело с мутациями, которые служат для него рабочим материалом. Действительно, мутация. выражающаяся в наследственном изменении какого-то свойства, обнаруживает известную долю генетиического материала организма, о существовании и функции которой иначе было бы трудно догадаться. Генетический анализ (состоящий в прослежиивании передачи какого-либо признака при половом размножении) позволяет установить число генов, ответственных за изучаемый признак. и их локализацию. Если признак представляет собой факт эмпирический, сложный (поскольку он соответствует внешним выражениям сложного взаимодействия элементарных явлений) и к тому же изменяющийся в зависимости от условий Среды и

многочисленных микрофакторов, ускользающих от контроля экспериментатора. то ген, напротив,- факт точный, конкретный и стабильный. Совершенно очевидно. что стремление разложить данное явление на его генетические компоненты всегда способствует становлению метода ясного логичного анализа.

Кроме того, использование данных генетики-единственный метод, позволяющий биологу вести строго научное экспериментальное исследование и с уверенностью сопоставлять полученные результаты. Таким образом, генетика дает нам одновременно теоретически рациональный подход, вносящий ясность в понимание исследуемых явлений, и точный экспериментальный метод. Они, безусловно, сохранят свое значение до тех пор. пока не будут удовлетворительно объяснены все свойства живых организмов.

Терминологический словарь

Аллельные гены- гены, располоденные в одних и тех же точках гомологичных хромосом.Аллель можнт быть доминантным и рецесивным.

Гаплоидность -состояние клетки с половинным хромосомным набором (имеется лишь по одной из двух гомологичных хромосом). Гаплоидным набором хромосом обладают женские и мужские половые клетки.

Генетическая рекомбинация - обмен участками генетического материала между гомологичными хромосомами или хроматидами в процессе деления клеток.

Геном - совокупность генов, заключенная в гаплоидном наборе хромосом.

Генотип - совокупность генов в генетическом наборе у данного вида.

Гетерозиготность - состояние гибридного генетического набора, при котором гомологичные хромосомы содержат различные аллели.

Гетерохроматин - спирализованные, интенсивно окрашивающиеся участки хромосом, обладающие своеобразной генетической функцией.

Гиперплоидность - наличие большего, чем обычно, количества генетического материала.

Гипоплоидность - наличие в клетках меньшего, нежели в норме, количества генетического материала.

Гомозиготность - состояние генетического набора, при котором парные гены на гомологичных хромосомах одинаковы.

Гомологичные хромосомы - хромосомы, сходные по строению и несущие одинаковый набор аллельных генов.

Диплоидность - наличие четного числа хромосом в клетках, при котором каждой хромосоме соответствует ее гомолог.

Дифференцировка клеток - процесс специализации функций и биохимических свойств клеток в организме.

ДНК - дезоксирибонуклеиновая киислота- химическое соединение, кодирующее генетическую информацию и хранящее ее в хромосомах эукариотических клеток.

Доминантность -преимущественное появление в фенотипе одного из двух парных генетических признаков в противоположность рецессивному признаку.

Конъюгация хромосм - временное соединение гомологичных хромосом.

Мейоз - особый вид деления клеток. Его биологический смысл состоит в генетической рекомбинации и появлении гаплоидных половых клеток.

Мембрана- в биологии обозначение для белково-липидных клеточных оболочек и внутриклеточных перегородок.

Митоз - совокупность сложных процессов в ходе деления неполовых клеток.

Митохондрии - частицы в цитоплазме клетки, вырабатывающие энергию для ее жизнедеятельности.

Мутация - случайное изменение генетического материала. передающееся по наследству.

Половые хромосомы - у человека X- и Y-хромосомы. Все остальные (у человека 22 пары) именуются аутосомами.

Протокариотические клетки - клетки, у которых ДНК не содержится в четко выраженном ядре.

Репликация ДНК - удвоение молекулы ДНК перед делением клетки.

Рецессивность - отсутствие проявляемости данного аллеля в паре с доминантным аллелем.

Рибосомы - частицы в клетке, состоящие из РНК и белка. На рибосомах идет считывание (трансляция) информационной РНК и образование белка.

РНК - рибонуклетновая кислота- химическое соединение, продукт генетической активности ДНК. Служит для переноса генетических сообщений внутри клеток.

Соматические клетки - любые клетки организма, кроме половых.

Фенотип- совокупность свойств и признаков организма. которые являются результатами взаимодействия генотипа особи и окружающей среды.

Фермент - белок, катализирующий определенные химические реакции в клетке. Последовательность аминокислот в нем определяется соответствующим геном или генами.

Хромосомы - основная структурная часть ядра клетки, содержащая ДНК и белок.

Хроматиды - хромосомы, прошедшие процесс удвоения в ходе деления клетки.

Цистрон - один из эквивалентов понятия “ген”.

Цитоплазма - часть клетки, окружающая клеточное ядро. Именно в цитоплазме происходит синтез белка на рибосомах.

Эукариотические клетки- клетки. имеющие ядро. ограниченное от цитоплазмы.

Эухроматин - деспирализованные, генетически активные участки ДНК в ядрах клеток.

Ядрышко - структура внутри клеточного ядра. Место синтеза рибосомальной РНК.

Список используемой литературы:

1.С. Х. Карпенков “Концепципи современного естествознания”,М.,1997 г.

2. В. А. Орехова, Т. А. Лашковская, М. П. Шейбак “Медицинская геенетика”,Минск, 1997 г.

3. А. А. Богданов, Б. М. Медников “Власть над геном”, Москва “Просвещение” 1989 г.

4. А. А. Каменский, Н. А. Соколова, С. А. Титов “Биология”, Москва,1997 г.

5. Биологический энциклопедический словарь, Москва, 1989 г.

6. Маниатис Т., Методы генетической инженерии, М., 1984;


А. А. Богданов, Б. М. Медников “Власть над геном”, Москва “Просвещение” 1989 г., стр. 3.

В. А. Орехова, Т. А. Лашковская, М. П. Шейбак “Медицинская геенетика”,Минск, 1997 г., стр. 4.

Каменский А. А., Соколова Н. А. ,Титов С. А. “Биология” , м., 1997 г., стр. 60.

В. А. Орехова, Т. А. Лашковская, М. П. Шейбак “Медицинская геенетика”,Минск, 1997 г.,стр. 49.

С. Х. Карпенков ‘Концепции современного естествознания”,М.,1997 г., стр. 309.

С. Х. Карпенков “ Основы современного естествознания” , М.,1997 г., стр. 309.

С. Х. Карпенков “Основы современного естествознания” , М.,1997 г., стр. 311.

2.

1. Между видами существует репродуктивная изоляция. 2. Этот фактор способствует сохранению вида как самостоятельной эволюционной единицы. 3. Особенно важно, чтобы были изолированы генетически отдаленные виды. 4. Возможность скрещивания между ними выше, чем с близкими, родственными видами. 5. Защита от чужих генов достигается: а) различными сроками созревания гамет, б) сходными местами обитания, в) способностью яйцеклетки различать свои и чужие сперматозоиды. 6. Межвидовые гибриды часто нежизнеспособны или бесплодны.

Элементы правильного ответа

Ошибки допущены в предложениях 3, 4, 5.

В предложении 3 ошибка в указании на характер генетической близости видов.

В предложении 4 ошибочно указана вероятность скрещивания между определенными видами.

В предложении 5 один из факторов защиты от чужих генов назван неправильно.

3. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они допущены, объясните их.

1. Ген – это участок молекулы иРНК, определяющий структуру белка и соответствующего признака организма. 2. В соматических клетках содержится гаплоидный набор хромосом. 3. Гены, хранящие информацию об одном признаке, находятся в строго определенных участках гомологичных хромосом и называются аллельными. 4. Особи, несущие два одинаковых по проявлению аллельных гена и дающих одинаковые гаметы, называются доминантными. 5. Особи, несущие разные по проявлению аллельные гены и соответственно разные гаметы, называются гетерозиготными. 6. Закономерности независимого наследования признаков установил Т.Морган.

Элементы правильного ответа

Ошибки допущены в предложениях 1, 2, 4, 6.

В предложении 1 ошибочное определение гена.

В предложении 2 ошибочно указан набор хромосом в соматических клетках.

В предложении 4 неправильно дано определение доминантности.

Элементы правильного ответа

Ошибки допущены в записи образуемых родительскими особями гамет и в записи одного из генотипов.

Исправьте допущенные ошибки, воспользовавшись решеткой Пеннета.

5. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они допущены, объясните их.

1. Ген – участок хромосомы, кодирующий информацию о последовательности аминокислот в одной молекуле белка. 2. Передаваясь от родителей детям, гены изменяются (мутируют). 3. Совокупность всех генов организма называется фенотипом. 4. Совокупность всех внешних и внутренних признаков организма называется генотипом. 5. По наследству передается не столько сам признак, сколько возможность его проявления. 6. Реализация же признака зависит и от генотипа, и от условий среды, в которой формируется организм.

Элементы правильного ответа

Ошибки допущены в предложениях 2, 3, 4.

В предложении 2 ошибочно указан характер передачи генов от родителей потомству.

В предложении 3 неправильно дано определение фенотипа.

В предложении 4 неправильно дано определение генотипа.

Элементы правильного ответа

1. Запись в генном выражении имеет буквенные обозначения.

2. Запись в хромосомном выражении показывается в буквенном и графическом виде.

Ответьте самостоятельно

    Найдите ошибку в условии задачи.

У собак признак черной окраски шерсти доминирует над признаком коричневой окраски. При скрещивании двух черных собак получили черных и коричневых щенков. Во втором поколении от коричневых родителей были получены 3 черных и два коричневых щенка. Каковы генотипы первой пары родителей?

    Найдите ошибки в приведенном тексте.

В семье отставного гусарского полковника Ивана Александровича Прилежаева родились два сына. Мальчики росли энергичными ребятами, участвовали во всех мальчишеских забавах. Однако вот беда – один из них, Петр, страдал гемофилией, а у Степана ее не было. Мать мальчиков, Полина Аркадьевна, обвиняла в болезни Петеньки своего мужа. Иван же Александрович виноватым себя не считал. Когда мальчики подросли, то, по традиции, должны были пойти служить в гусарский полк. Однако обоих забраковали по медицинской части, сказав отцу, что у ребят тяжелая наследственность и служить им нельзя. Любая царапина опасна для обоих, а тем более ранение. Через некоторое время Петр женился на здоровой по признаку гемофилии девушке, в роду которой никаких наследственных заболеваний не было. У них родились два мальчика и две девочки. Все дети страдали гемофилией. Степан тоже женился – на второй дочери из той же семьи. У него родился мальчик гемофилик и две здоровые девочки. Про здоровье внуков в этой семье ничего не известно.

    Какой процесс изображен на рисунке? Обозначьте образовавшиеся гаметы и объясните причину появления разных гамет.

Вопросы уровня С6

Задачи на моногибридное скрещивание

Алгоритм решения задач по генетике

1. Выберите буквенные обозначения аллелей.

2. Запишите все данные условия задачи.

3. Напишите генотипы скрещивающихся особей.

4. Напишите виды образующихся у родителей гамет.

5. Запишите генотипы и фенотипы потомства.

Важнейшим условием правильного решения задачи является полное понимание того, что известно и что спрашивается. Например, если в условии сказано, что от двух серых мышей было получено 9 мышат, из которых одна или две были белыми, то это означает, что оба родителя были гетерозиготными по доминантному признаку серой окраски, а белый цвет шерсти – рецессивный признак. Данный пример показывает, как, исходя из условия задачи, вывести необходимые для ее решения данные. Поняв смысл задачи и получив дополнительные данные из ее условия, правильно оформите запись решения. В приведенной задаче запись будет выглядеть так:

Если в задаче не спрашивают о том, каково было расщепление признаков в потомстве по соотношению, то вам и не нужно показывать это. Достаточно представить все возможные генотипы в F1.

Примеры простых задач

1. Какого потомства F1 можно ожидать от скрещивания красноцветкового гетерозиготного растения гороха (А ) с белоцветковым растением? Будет ли наблюдаться расщепление признаков и в каком соотношении?

2. От мух дрозофил с нормальными крыльями и мух с укороченными крыльями были получены мухи с нормальными и укороченными крыльями в соотношении 1:1. Определите генотипы родителей и потомства.

3. Черное оперение андалузских кур не полностью доминирует над белым оперением. Петух с черными перьями был скрещен с курицей, имевшей белое оперение. Часть цыплят, родившихся от этого скрещивания, были с голубым оперением. Запишите генотипы всех особей, упомянутых в условии. Какого расщепления по генотипу и фенотипу следует ждать в потомстве от этих родителей при условии, что цыплят будет достаточно много? Можно ли вывести чистую линию кур с голубыми перьями?

4. При скрещивании двух высокорослых (С ) растений было получено 25% семян, из которых выросли низкорослые растения. Каковы генотипы низкорослых растений?

Задачи на дигибридное скрещивание

При решении задач этого типа необходимо:

а) внимательно прочитать условие задачи;
б) по ходу чтения задачи сделать необходимые записи;
в) поняв условие задачи, нужно обозначить аллели соответствующими буквами, начертить решетку Пеннета и заполнять ее в соответствии с логикой решения;
г) проследить, чтобы общий вид записи решения соответствовал требованиям.

Пример задачи, разбираемой в учебниках

Растения гороха, дающие желтые (А ) гладкие (В ) семена, скрестили с растениями, дающими зеленые (а ) морщинистые (b ) семена. Обе линии были чистыми. Каким будет гибридное потомство в F1 и F2 по генотипам и фенотипам?

Логика рассуждений такова.

1. Если линии чистые, значит, родители гомозиготны по обоим признакам.

2. Каждый из родителей дает один сорт гамет.

Генотип ААВВ дает гаметы АВ .
Генотип ааbb дает гаметы аb .
Следовательно, все гибриды первого поколения будут иметь генотип АаВb .
Особи с этим генотипом образуют 4 сорта гамет: АВ , аВ , Аb , аb .

3. Для определения генотипов особей второго поколения необходимо начертить решетку Пеннета и выписать образуемые родителями типы гамет в верхнюю горизонтальную строку и левый вертикальный столбец. После чего, в оставшиеся свободные поля записать полученные генотипы потомства.

ААВВ ж. гл.

АаВВ ж. гл.

ААВb ж. гл.

ААВb ж. гл.

АаВВ ж. гл

ааВВ з. гл.

АаВb ж. гл.

ааВb з. гл.

ААВb ж. гл

АаВb ж. гл.

ААbb ж. морщ.

Ааbb ж. морщ.

АаВb ж. гл.

ааВb з. гл.

Ааbb ж. морщ.

ааbb з. морщ.

– оба доминантных гена;
– доминантный ген одного из признаков;
– доминантный ген другого признака;
– только рецессивные гены.

Результат в данном случае будет следующим: 9АВ : 3Аb : 3аВ : 1аb.

5. Ответ: гибридное потомство в F1 – АаВb , во втором поколении будет наблюдаться 16 генотипов (показаны в решетке Пеннета) и 4 фенотипа:

– растения с желтыми гладкими семенами;
– растения с желтыми морщинистыми семенами;
– растения зелеными гладкими семенами;
– растения с зелеными морщинистыми семенами.

Задачи, встречающиеся в экзаменационных работах

Элементы правильного ответа

Для правильного решения нужно доказать, что:

1) мухи с генотипом ХУ (самцы) могут быть красноглазыми и белоглазыми;
2) гетерозиготные самки всегда красноглазые, гомозиготные по рецессивному признаку самки – белоглазые, а самки гомозиготные по доминантному признаку – красноглазые.

Чтобы доказать эти два положения необходимо скрестить красноглазую гетерозиготную самку с белоглазым самцом. Часть самцов, полученных от этого скрещивания, будет иметь глаза белого цвета. Следовательно, рецессивный признак сцеплен с Х -хромосомой.

2. Составьте схему, иллюстрирующую приведенный ниже текст, показав генотипы и характер наследования дальтонизма.

Если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х -хромосомой). В том же случае когда отец дальтоник, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, в которых мать и отец обладают нормальным зрением, половина сыновей могут оказаться пораженными цветовой слепотой. Цветовая слепота чаще встречается у мужчин.

Элементы правильного ответа

Девочки – носительницы, мальчики – дальтоники.

Девочки – носительницы, мальчики – здоровы.

Половина мальчиков и девочек здоровы, половина девочек носительницы, половина мальчиков дальтоники.

Элементы правильного ответа для самостоятельного решения

1. Записать буквенные обозначения аллелей генотипов родителей и схему скрещивания.

2. Определить все указанные в условии генотипы.

3. Составить схему нового скрещивания и записать его результаты.

Элементы правильного ответа

1. Генотипы родителей Х f Х и ХУ .

2. Генотипы детей Х f У , Х f Х , ХХ , ХУ .

3. Характер наследования доминантный, сцепленный с Х -хромосомой.

Элементы правильного ответа

1. По условию ген облысения наследовался только мальчиками.

2. Все женщины в рассматриваемых семьях были с нормальными волосами.

3. Следовательно, этот ген передавался от отцов, т.е. по мужской линии.

4. Вывод: признак сцеплен с У -хромосомой и передается от отцов к сыновьям.

P1 ХУ л x ХХ
F1 2ХУ л и 4ХХ
P2 ХУ л x ХХ
F2 Внуки ХУ л

Решите самостоятельно

    Составьте схему, иллюстрирующую приведенный ниже текст, показав генотипы и характер наследования гемофилии.

Примером наследования, сцепленного с полом, может послужить наследование рецессивного полулетального гена, вызывающего несвертываемость крови на воздухе – гемофилию. Это заболевание появляется почти исключительно у мальчиков. При гемофилии нарушается образование фактора, ускоряющего свертывание крови. Рецессивный ген, контролирующий синтез этого фактора, находится в определенном участке Х -хромосомы и не имеет аллеля в У -хромосоме. После решения задачи ответьте на вопрос: «Почему крайне редко встречаются женщины больные гемофилией?»
Запишите результаты скрещивания, которые могут быть получены в следующих случаях:

а) отец гемофилик, мать – носительница гена гемофилии;
б) отец здоров, мать – носительница гена гемофилии;
в) отец гемофилик, мать не несет гена гемофилии.

    У человека большие глаза и римский нос (с горбинкой) доминируют над маленькими глазами и греческим (прямым) носом. Женщина с большими глазами и греческим носом вышла замуж за человека с маленькими глазами и римским носом. У них родились четверо детей, двое из которых были с большими глазами и римским носом. Каковы генотипы родителей? С какой вероятностью у этой пары может родиться ребенок с маленькими глазами и римским носом? С какой вероятностью у этой пары может родиться ребенок с маленькими глазами и греческим носом?

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность – при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств.

    Триплетность.

    Вырожденность или избыточность.

    Однозначность.

    Полярность.

    Неперекрываемость.

    Компактность.

    Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 4 3 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую либо аминокислоту, их называют смысловые кодоны . Три триплета не кодируют

Таблица 1.

Кодоны информационной РНК и соответствующие им аминокислоты

О с н о в а н и я к о д о н о в

Нонсенс

Нонсенс

Нонсенс

Мет

Вал

аминокислот а являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три – УАА, УАГ, УГА , их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называютнонсенс-мутация . Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться – синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» - Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции .

б. Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон - это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами - УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин - двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках.

И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент - гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части – глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит гем, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона , который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид – первый, второй или третий. Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка - глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные -цепи и две -цепи. Молекула -цепи содержит 141 аминокислотных остатков, -цепочка - 146, - и -цепи различаются по многим аминокислотным остаткам. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. Ген, кодирующий -цепь располагается в коротком плече 16 хромосомы, -ген - в коротком плече 11 хромосомы. Замена в гене, кодирующем -цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” - приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту - тирозин Фенотипически это проявится в тяжёлом заболевании.. Аналогичная замена в 63 положении -цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении -цепи является причиной тяжелейшего заболевания - серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в -цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам - они обе гидрофильны. Валин - гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина - у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту – гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

в. Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

Кодон аминокислота

Вырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

г. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

д. Неперекрываемость.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33,А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов (см. рис.34) третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Однако многочисленные опыты показали, что при нарушении одного нуклеотида в ДНК, нарушения в белке всегда касаются только одной аминокислоты, что характерно для неперекрывающегося кода.

ГЦУГЦУГ ГЦУГЦУГ ГЦУГЦУГ

ГЦУ ГЦУ ГЦУ УГЦ ЦУГ ГЦУ ЦУГ УГЦ ГЦУ ЦУГ

*** *** *** *** *** ***

Аланин – Аланин Ала – Цис – Лей Ала – Лей – Лей – Ала – Лей

А Б В

Не перекрывающийся код Перекрывающийся код

Рис. 34. Схема, объясняющая наличие в геноме не перекрывающегося кода (объяснение в тексте).

Неперекрываемость генетического кода связана с ещё одним свойством – считывание информации начинается с определённой точки – сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ.

Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

е. Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

ж. Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

МЗ. Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны,

соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.



 


Читайте:



Магические числа для привлечения денег (5 фото) Как найти счастливую купюру

Магические числа для привлечения денег (5 фото) Как найти счастливую купюру

Совершенно не зря на монетах и купюрах помещены цифры. Считается, что числа связаны с деньгами таинственной магией. Знаете ли вы, что нумерология...

Сколько стоит страхование жизни и здоровья?

Сколько стоит страхование жизни и здоровья?

В наше время вопрос о страховании жизни очень актуален. Особенно для представителей рисковых профессий, военнослужащих, призывников, пенсионеров....

Социальные субсидии Проект на субсидию

Социальные субсидии Проект на субсидию

При принятии решения организации своего дела, могут понадобиться внешние источники финансирования. Для получения денег требуется грамотное...

Инструкция по возврату налоговой переплаты

Инструкция по возврату налоговой переплаты

Если у предпринимателя возникла переплата по налогам, он может вернуть ее. Однако получить свои деньги назад он сможет, только если у него не будет...

feed-image RSS